HOÀNG NHÂM

HÓA HOC VÔ CƠ

NHÀ XUẤT BẢN GIÁO DỤC

TẬP BA

HOÀNG NHÂM

HÓA HỌC VÔ CƠ

Tập ba

CÁC NGUYÊN TỐ CHUYỂN TIẾP

(Tái bản lần thứ tư)

NHÀ XUẤT BẢN GIÁO DỰC

CHƯƠNG I

PHỨC CHẤT

SỰ TẠO PHỨC

Khi xét các nguyên tố điển hình (nhóm A) chúng ta đã gặp một số phản ứng tạo phức.

Ví dụ:

```
Be(OH)_2 + 2NaOH = Na_2[Be(OH)_4]

AlF_3 + 3NaF = Na_3[AlF_6]

SiF_4 + 2HF = H_2SiF_6

NH_3 + HCl = NH_4Cl
```

Khả năng tạo phức của các nguyên tố chuyển tiếp (nhóm B) còn rộng lớn hơn nhiều và là một trong những điểm khác biệt giữa nguyên tố chuyển tiếp và nguyên tố điển hình. Số phức chất của kim loại chuyển tiếp lớn gấp nhiều lần so với số hợp chất đơn giản của chúng. Hóa học của kim loại chuyển tiếp thường được coi cơ bản là hóa học phức chất. Đây là một lãnh vực bao trùm hóa học vô cơ.

Nguyên tử kim loại chuyển tiếp có nhiều obitan hóa trị, trong đó có nhiều obitan trống và có độ điện âm lớn hơn kim loại kiểm và kiểm thổ cho nên rất có khả năng nhận cặp electron và là chất tạo phức tốt.

Trở lại lịch sử phát triển của hóa học phức chất, những phức chất đã được biết đến và nghiên cứu đầu tiên chính là phức chất của kim loại chuyển tiếp. Có lẽ xanh Beclin có thành phần KCN.Fe(CN)₂.Fe(CN)₃ do Điesbat (Diesbach) người Đức điều chế vào đầu thế kỉ XVIII để làm bọt màu là phức chất được biết và sử dụng đầu tiên. Phức chất thứ hai được biết bởi Taxae (Tassaert) người Pháp vào năm 1789 là hợp chất màu nâu-đỏ tạo nên khi amoniac kết hợp với quặng của kim loại coban.

Vào đầu thế kỉ XIX, nhiều amoniacat của coban được điều chế, chúng có màu đẹp và có tên gọi gắn liền với màu của chúng, ví dụ như amoniacat CoCl₃.5NH₃ màu đỏ được gọi là muối puapurêo, amoniacat CoCl₃.5NH₃.H₂O có màu hồng được gọi là muối rozeo. Đến cuối thế kỉ, nhiều amoniacat của crom và platin được điều chế. Tuy nhiên, gần một thế kỉ trôi qua, chưa có một lí thuyết nào giải thích thỏa đáng sự tạo thành những amoniacat đó.

000 AV

Thuyết mạch

Vào những năm 60 của thế kỉ XIX, trong hóa học khái niệm hóa trị đã hình thành rõ nét, mỗi nguyên tố có một hóa trị cố định và người ta đã biết các hợp chất hữu cơ có cấu tạo mạch gồm những nguyên tử cacbon. Ví dụ như phân tử hexan có cấu tạo mạch $\mathrm{CH}_3 - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{CH}_2 - \mathrm{CH}_3$ gồm 6 nguyên tử C, trong đó nhóm metyl CH_3 có hóa trị một và nhóm metylen $-\mathrm{CH}_2$ – có hóa trị hai.

Vận dụng những thành tựu đó, năm 1884 Blomstran (W. Blomstrand) và Jogenxen (Jorgensen) đưa ra thuyết mạch về cấu tạo các amoniacat của coban. Các ông cho rằng trong $\mathrm{NH_4Cl}$ với cấu tạo $\mathrm{H-NH_3-Cl}$, nhóm $\mathrm{-NH_3-}$ có hóa trị hai cho nên:

Khi tác dụng với dung dịch AgNO₃, ba nguyên tử Cl trong muối thứ nhất đều tạo kết tủa AgCl vì chúng ở cách xa nguyên tử Co, một nguyên tử Cl trong muối thứ hai và hai nguyên tử Cl trong muối thứ ba không tạo kết tủa vì chúng ở sát ngay nguyên tử Co.

Tuy nhiên, thuyết mạch không giải thích được tại sao trong các amoniacat của kim loại chỉ có 6 phân tử NH_3 mà không có 8 hay 10 và tại sao phân tử NH_3 lại trơ về mặt hóa học. (Cần chú ý rằng thuyết mạch ra đời và được phát triển gần như đồng thời với thuyết điện li của Arêniut).

Thuyết phối trí

Đang nghiên cứu trong lĩnh vực hóa lập thể của những hợp chất hữu cơ chứa nitơ, nhà hóa học Thụy Sĩ Vecne (A. Werner, 1866-1919, giải thưởng Noben về hóa học năm 1913) đã chuyển hướng nghiên cứu sang các amoniacat của kim loại, một lãnh vực rất hấp dẫn lúc bấy giờ. Đứng trước những khó khăn mà các nhà hóa học vô cơ gặp phải trong việc giải thích cấu tạo của các amoniacat kim loại, Vecne nhận thấy không thể áp đặt những ý tưởng đã có trong hóa học hữu cơ vào những amoniacat. Làm nhiều thí nghiệm với amoniacat của Co, Cr và Pt, ông nhận thấy ý tưởng về một hóa trị cố định không thể áp dụng được cho những kim loại này và vào đầu năm 1892, thuyết phối trí của Vecne đã ra đời trong một giấc mơ, lúc đó ông mới 26 tuổi. Thuyết phối trí bao gồm những điểm sau đây:

- Nguyên tử của nguyên tố có thể có hai loại hóa trị: hóa trị chính và hóa trị phụ. Hóa trị chính tương ứng với khái niệm số oxi hóa ngày nay và hóa trị phụ tương ứng với khái niệm số phối trí ngày nay.
- Nguyên tử tạo phức có xu hướng bão hòa các hóa trị chính và hóa trị phụ. Hóa trị chính chỉ được bão hòa bằng anion còn hóa trị phụ được bão hòa bằng anion và phân tử trung hòa.
 - Hóa trị phụ có phương xác định trong không gian.

Ba amoniacat của coban vừa xét trên đây được mô tả như sau theo thuyết phối trí.

Trong các công thức cấu tạo trên đây, vạch liền chỉ hóa trị chính và vạch rời chỉ hóa trị phụ, hóa trị chính của Co bằng 3 và hóa trị phụ bằng 6. Trong hợp chất thứ nhất, các nguyên tử Cl chỉ thỏa mãn hóa trị chính, còn các phân tử NH₃ thỏa mãn hóa trị phụ. Trong hợp chất thứ hai, một nguyên tử Cl vừa thỏa mãn hóa trị chính, vừa thỏa mãn hóa trị phụ. Nguyên tử Cl thỏa mãn hóa trị phụ này không tạo nên kết tủa AgCl khi hợp chất thứ hai tác dụng với dung dịch AgNO₃. Tương tự như vậy hai nguyên tử Cl trong hợp chất thứ ba thỏa mãn cả hai hóa trị không tạo nên kết tủa AgCl. Trong cả ba hợp chất, các phân tử NH₃ đều thỏa mãn hóa trị phụ nên không bị trung hòa bởi axit mạnh cũng như không bị kiềm mạnh đẩy ra khỏi dung dịch.

Vào thời của Vecne, người ta chưa biết được bản chất của hóa trị chính và hóa trị phụ vì trong hóa học chưa có những phương pháp thực nghiệm và lí thuyết để nghiên cứu. Nhưng

Vecne đã đề ra phương pháp nghiên cứu và tổng hợp phức chất và phương pháp đó trong một số trường hợp cho phép ông dự đoán đúng số cực đại của phức chất được tạo nên trong những điều kiện xác định và những đặc điểm cơ bản về cấu tạo của chúng.

Công cụ chính mà Vecne dùng để lí giải cấu tạo của phức chất là việc nghiên cứu hiện tượng đồng phân. Vecne so sánh số đồng phân dự đoán với số đồng phân tổng hợp được của một phức chất có thành phần xác định và dựa vào đó để chứng minh những quan niệm đúng đắn của mình về cấu tạo của chúng. Thành tựu lớn đã đạt được của Vecne là sự phù hợp hoàn toàn giữa số đồng phân tổng hợp và số đồng phân dự đoán của phức chất có cấu hình bát diện. Tuy đây không phải là bằng chứng trực tiếp có thể xác minh cấu tạo của hợp chất, những dự đoán của Vecne dùng để khẳng định sự đúng đán của thuyết phối trí là một tiến bộ lớn trong khi chưa có những phương pháp nghiên cứu hiện đại.

Thuyết phối trí của Vecne đã cho phép hệ thống hóa những hiểu biết về phức chất thời bấy giờ và định hướng cho việc tổng hợp phức chất mới. Thuyết phối trí cộng với hai mươi năm tìm tòi nghiên cứu không mệt mỏi và hoạt động giảng dạy của Vecne đã được đánh giá bằng giải thưởng Noben vào năm 1913 về hóa học. Thuyết phối trí và sự ra đời thuyết cặp electron của Liuyt về liên kết cộng hóa trị đã dẫn đến quan niệm về sau này về *liên kết phối trí* (liên kết cho-nhận).

CẤU TẠO CỦA PHỰC CHẤT

Trong công thức cấu tạo của *phức chất* (thường gọi là *hợp chất phối trí*) người ta phân ra cầu nội và cầu ngoại. *Cầu nội* hay còn gọi là *cầu phối trí* được viết trong dấu móc vuông, bao gồm chất tạo phức và các phối tử.

Chất tạo phức có thể là ion hay nguyên tử và thường được gọi chung là nguyên tử trung tâm. Phối tử hay ligand (từ chữ ligare tiếng La Tinh là buộc quanh) là ion ngược dấu hay phân tử trung hòa điện được phối trí xung quanh nguyên tử trung tâm. Điện tích của cấu nội là tổng điện tích của các ion ở trong cầu nội. Những ion nằm ngoài và ngược dấu với cầu nội tạo nên cầu ngoại.

Ví dụ như những amonia
cat của coban vừa xét trên đây $CoCl_3.6NH_3$, $CoCl_3.5NH_3$ và
 $CoCl_3.4NH_3$ có công thức cấu tạo là:

 $[Co(NH_3)_6]Cl_3$

[Co(NH₃)₅Cl]Cl₂

và [Co(NH₃)₄Cl₂]Cl

(cầu nội) (cầu ngoại)

(cầu nội)

(cầu ngoại)

(cầu nôi)

(cầu ngoại)

- Cầu nội của phức chất có thể là cation.

Ví dụ:

[Al(H₂O)₆]Cl₃[Zn(NH₃)₄]Cl₂

$$[Co(NH_3)_6]Cl_3$$

- Cầu nội của phức chất có thể là anion.

Ví dụ:

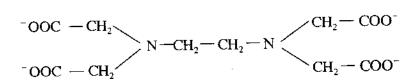
 $H_2[SiF_6]$ $K_2[Zn(OH)_4]$ $K_2[PbI_4]$

- Cầu nội của phức chất có thể là phân tử trung hòa điện, không phân li trong dung dịch.

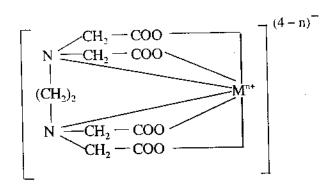
Ví du:

[Co(NH₃)₃Cl₃] [Pt(NH₃)₂Cl₂] [Ni(CO)₄]

Qua những ví dụ trên đây, ta thấy nguyên tử trung tâm có thể là kim loại (Co, Al, Zn, Pt và Ni) hay không-kim loại (Si), có thể là ion (Co³⁺, Al³⁺, Zn²⁺...) hay nguyên tử (Ni); phối tử có thể là anion (F^- , Cl^- , OH^-) hay phân tử (NH_3 , H_2O ...).


Phối tử

Những phối tử là anion thường gặp là F^- , Cl^- , I^- , OH^- , CN^- , SCN^- , NO_2^- , $S_2O_3^{2-}$, $C_2O_4^{2-}$, ... Những phối tử là phân tử thường gặp là H_2O , NH_3 , CO, NO, pyriđin (C_5H_5N), etylendiamin ($H_2N-CH_2-CH_2-NH_2$).


Dựa vào số nguyên tử mà phối tử có thể phối trí quanh nguyên tử trung tâm, người ta chia phối tử ra làm phối tử một càng và phối tử nhiều càng. Những anion F^- , Cl^- , OH^- , CN^- ... và những phân tử như H_2O , NH_3 ... là *phối tử một càng*. Anion $C_2O_4^{2-}$, phân tử etylenđiamin là *phối tử hai càng*. Ví dụ như ion phức của ion Cu^{2+} với amoniac và của ion Cu^{2+} với etylenđiamin có cấu tạo:

$$\begin{bmatrix} H_{3}N & & & H_{2} & & H_{2} & & \\ H_{3}N & & & NH_{3} & & & \\ H_{3}N & & & NH_{3} & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Anion của axit etylendiamintetraaxetic (viết tắt là EĐTA):

là phối tử sáu càng, nó có hai nguyên tử N và bốn nguyên tử O có thể phối trí quanh ion kim loại Mⁿ⁺:

Chất trilon B dùng trong hóa học phân tích là muối đinatri của axit etylenđiamintetraaxetic. Phức chất được tạo nên bởi phối tử nhiều càng với một ion kim loại được gọi là phức chất vòng càng hay chelat (từ chữ chele tiếng Hy Lạp là vòng).

Số phối trí

Số phối tử bao quanh chất tạo phức xác định số phối trí của chất tạo phức. Ví dụ như số phối trí của ion Co^{3+} , Al^{3+} , Ni^{2+} trong các phức chất $[Co(NH_3)_6]Cl_3$, $[Co(NH_3)_4Cl_2]Cl$, $Na_3[AlF_6]$ và $[Ni(NH_3)_6](NO_3)_2$ bằng 6; số phối trí của Zn^{2+} , Pt^{2+} , Ni^{2+} , Au^{3+} trong các phức chất $K_2[Zn(OH)_4]$, $[Pt(NH_3)_2Cl_2]$, $[Ni(CO)_4]$ và $H[AuCl_4]$ bằng 4; số phối trí của ion Cu^{2+} trong các ion phức $[Cu(NH_3)_4]^{2+}$ và $[Cu(en)_2]^{2+}$ đều bằng 4 vì phối tử một càng tạo nên số phối trí bằng 1 và phối tử hai càng tạo nên số phối trí bằng 2 cho nguyên tử trung tâm; số phối trí của Ag^+ trong ion phức $[Ag(NH_3)_2]^+$ bằng 2, số phối trí của Fe trong phức chất $[Fe(CO)_5]$ bằng 5; số phối trí của kim loại hóa trị bốn M(IV) trong phức chất $M(aca)_4$ (ở đây M là Ce, Zr, Hf, Th, U, Pu và aca là axetylaxeton) bằng 8... Tuy nhiên 4 và 6 là những số phối trí phổ biến nhất trong các phức chất, các số phối trí khác kém phổ biến hơn nhiều.

Một số chất tạo phức có số phối trí cố định trong tất cả các phức chất, ví dụ như Cr³+ và Pt⁴+ luôn luôn có số phối trí là 6. Nhưng tùy thuộc vào bản chất của phối tử và điều kiện tạo thành phức chất, đa số chất tạo phức có thể có số phối trí khác nhau, ví dụ như ion Ni²+ trong phức chất có thể có các số phối trí 4 và 6. Số phối trí 6 của nguyên tử trung tâm luôn luôn ứng với cấu hình bát diện của phức chất còn số phối trí 4, ứng với cấu hình tứ diện hoặc cấu hình hình vuông.

TÊN GỌI CỦA PHỨC CHẤT

Giống với hợp chất đơn giản, tên gọi của phức chất bao gồm tên của cation và tên của anion.

Tên gọi của ion phức gồm có: số phối tử và tên phối tử là anion, số phối tử và tên của phối tử là phân tử trung hòa, tên của nguyên tử trung tâm và số oxi hóa.

Số phối tử

Để chỉ số lượng phối tử một càng người ta dùng những tiếp đầu đi, tri, tetra, penta, hexa ... có nghĩa là 2, 3, 4, 5, 6 ...

Để chỉ số lượng phối tử nhiều càng người ta dùng những tiếp đầu bis, tris, tetrakis, pentakis, hexakis có nghĩa là 2, 3, 4, 5, 6 ...

Tên phối tử

- Nếu phối tử là anion, người ta lấy tên của anion và thêm đuôi o:

	NO_2^-	nitro	CO ₃ ²⁻	cacbonato
F floro	ONO-	nitrito	OH-	hiđroxo
Cl" cloro	SO_3^{2-}	sunfito	CN-	xiano
Br bromo	$S_2O_3^2$	tiosunfato	SCN ⁻	tioxianato
I iođo	$C_2O_4^{2-}$	oxalato	NCS-	isotioxianato

- Nếu phối tử là phân tử trung hòa, người ta lấy tên của phân tử đó:

C₂H₄ etylen, C₅H₅N pyridin, CH₃NH₂ metylamin

 $\mathrm{NH_2CH_2}$ $\mathrm{CH_2NH_2}$ etylendiamin, $\mathrm{C_6H_6}$ benzen

- Một số phân tử trung hòa được đặt tên riêng:

H₂O aqua, NH₃ ammin, CO cacbonyl, NO nitrozyl.

Nguyên tử trung tâm và số oxi hóa

- Nếu nguyên tử trung tâm ở trong cation phức, người ta lấy tên của nguyên tử đó kèm theo số La Mã viết trong dấu ngoặc đơn để chỉ số oxi hóa khi cần.
- Nếu nguyên tử trung tâm ở trong anion phức, người ta lấy tên của nguyên tử đó thêm đuôi at và kèm theo số La Mã viết trong dấu ngoặc đơn để chỉ số oxi hóa, nếu phức chất là axit thì thay đuôi at bằng ic.

Ví dụ tên gọi của một số phức chất:

 $[Co(NH_3)_6]Cl_3$

hexaammin coban(III) clorua

[Cr(NH₃)₆]Cl₃ hexaammincrom(III) clorua

[Co(H₂O)₅Cl]Cl₂ cloropentaaquacoban(III) clorua

[Cu(NH₂CH₂CH₂NH₂)₂]SO₄ bisetylendiamin đồng(II) sunfat

[Co(aca)(H₂O)₄]Cl axetylaxetonatotetraaquacoban(II) clorua

Na₂[Zn(OH)₄] natri tetrahidroxozincat

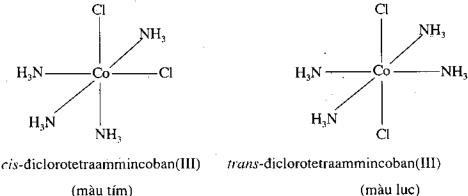
 $K_4[Fe(CN)_6]$ kali hexaxianoferat(II)

 $K_3[Fe(CN)_6]$ kali hexaxianoferat(III)

H[AuCl₄] axit tetracloroauric(III)

HIỆN TƯỢNG ĐỒNG PHÂN TRONG PHỨC CHẤT

Đồng phân như đã biết là sự tồn tại của những chất có cùng một thành phần nhưng khác nhau về cấu tạo phân tử nên có tính chất khác nhau. Phức chất cũng có những dạng đồng phân giống như hợp chất hữu cơ. Những kiểu đồng phân chính của phức chất là đồng phân hình học và đồng phân quang học. Ngoài ra còn có các kiểu đồng phân khác như đồng phân phối trí, đồng phân ion hóa và đồng phân liên kết.


Đồng phân hình học hay đồng phân cis-trans

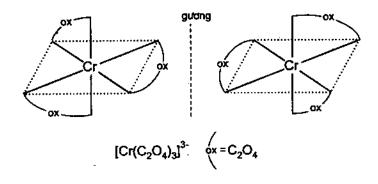
Trong phức chất, các phối tử có thể chiếm những vị trí khác nhau đối với nguyên tử trung tâm. Khi phức chất có các loại phối tử khác nhau, nếu hai phối tử giống nhau ở về cùng một phía đối với nguyên tử trung tâm thì phức chất là đồng phân dạng cis (cis tiếng La Tinh nghĩa là một phía) và nếu hai phối tử giống nhau ở về hai phía đối với nguyên tử trung tâm thì phức chất là đồng phân dạng trans (trans tiếng La Tinh nghĩa là khác phía).

Ví dụ phức chất hình vuông [Pt(NH₃)₂Cl₂] có hai đồng phân cis và trans:

Trong đồng phân dạng cis, hai phân tử NH_3 cũng như hai nguyên tử Cl đều ở cùng một phía đối với Pt, còn trong đồng phân dạng trans, hai phân tử NH_3 cũng như hai nguyên tử Cl ở đối diện với nhau qua Pt.

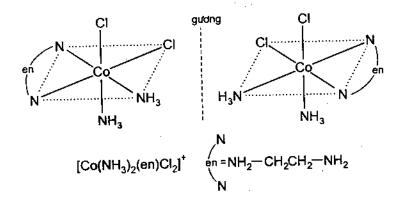
Ion phức bát điện [Co(NH₃)₄Cl₂]⁺ có hai đồng phân cis và trans:

(màu luc)


Trong đồng phân cis, hai nguyên tử Cl ở cùng một phía đối với Co, còn trong đồng phân trans, hai nguyên tử Cl ở đối diên với nhau qua Co.

Phức chất từ diện không có đồng phân hình học vì hai đỉnh của bất kì từ diện nào đều ở về một phía đối với nguyên tử trung tâm.

Đồng phân quang học hay đồng phân gương


Hiện tượng đồng phân quang học sinh ra khi phân tử hay ion không có mặt phẳng đối xứng hay tâm đôi xứng, nghĩa là phân tử hay ion không thể chồng khít lên ảnh của nó ở trong gương. Hai dang đồng phân quang học không thể chồng khít lên nhau tương tự như vật với ảnh của vật ở trong gương. Bởi vậy, kiểu đồng phân này còn gọi là đồng phân gương. Do có cấu tạo không đối xứng, các đồng phân gương đều hoạt động về mặt quang học: làm quay mặt phẳng của ánh sáng phân cực. Các đồng phân quang học của một chất có tính chất lí hóa giống nhau trừ phương làm quay trái hay phải mặt phẳng của ánh sáng phân cực.

Ví dụ ion phức trisoxalatocromat(III) $[Cr(C_2O_4)_3]^{3-}$ có hai đồng phân gương:

(vach liền chỉ liên kết, vach chấm chỉ cấu hình hình vuông)

Ion phức đicloroetylendiamindiammincoban(III) [Co(NH₃)₂enCl₂]⁺ có hai đồng phân guong:

(vạch liền chỉ liên kết, vạch chấm chỉ hình vuông trong cấu hình bát diện và en=etylendiamin).

Nhiều đồng phân hình học và đồng phân quang học của các kim loại Co, Pt và Cr đã được Vecne dự đoán, tổng hợp và nghiên cứu để làm cơ sở xác minh thuyết phối trí của mình.

Đồng phân phối trí

Hiện tượng đồng phân phối trí sinh ra do sự phối trí khác nhau của loại phối tử quanh hai nguyên tử trung tâm của phức chất gồm có cả cation phức và anion phức.

Ví du:

$$\begin{split} &[Co(NH_3)_6][Cr(CN)_6] & v\grave{a} & [Cr(NH_3)_6][Co(CN)_6] \\ &[Cu(NH_3)_4][PtCl_4] & v\grave{a} & [Pt(NH_3)_4][CuCl_4] \\ &[Pt(NH_3)_4][& PtCl_6] & v\grave{a} & [Pt(NH_3)_4Cl_2][& PtCl_4] \end{split}$$

Đồng phân ion hóa

Hiện tương đồng phân ion hóa sinh ra do sự sắp xếp khác nhau của anion trong cầu nội và cầu ngoại của phức chất.

Ví dụ:

$$[Co(NH_3)_5Br]SO_4 \qquad \qquad và \qquad [Co(NH_3)_5SO_4]Br \\ (màu tím-đỏ) \qquad \qquad (màu hồng-đỏ)$$

Dung dịch của đồng phân màu tím-đỏ, khi tác dụng với Ba^{2+} cho kết tủa $BaSO_4$ còn dung dịch của đồng phân màu hồng-đỏ, khi tác dụng với Ag^+ cho kết tủa AgBr.

860.0

Đồng phân liên kết

Hiện tượng đồng phân liên kết sinh ra khi phối tử một càng có khả năng phối trí qua hai nguyên tử. Ví dụ tùy thuộc vào điều kiện, anion NO_2^- có thể phối trí qua nguyên tử N (liên kết M-NO₂) hay qua nguyên tử O (liên kết M-ONO), anion SCN⁻ có thể phối trí qua nguyên tử S (liên kết M-SCN) hay qua nguyên tử N (liên kết M-NCS).

Ví dụ:

 $[Co(NH_3)_5NO_2]Cl_2$ và $[Co(NH_3)_5ONO]Cl_2$

Nitropentaammincoban(III) clorua Nitritopentaammincoban(III) clorua

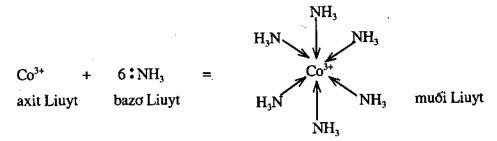
(màu vàng) (màu hồng-đỏ)

 $[Mn(CO)_5NCS]$ và $[Mn(CO)_5NCS]$

Tioxianatopentacacbonylmangan Isotioxianatopentacacbonylmangan

 $Ch\dot{u}$ ý: Hai đồng phân nitropentaammin và nitritopentaammin của coban(III) này đã được Jogenxen tổng hợp từ năm 1894, sau đó được cả Jogenxen và Vecne cùng nghiên cứu và hai ông đã giải thích đúng cấu tạo khác nhau của chúng trong khi chưa có những phương pháp nghiên cứu hiện đại như ngày nay. Hai ông đã so sánh màu của hai đồng phân đó với màu của các phức chất khác của coban, nhận thấy những hợp chất gồm có 6 liên kết Co^{3+} – N như $[Co(NH_3)_6]^{3+}$ và $[Co(en)_3]^{3+}$ đều có màu vàng còn những hợp chất có 5 liên kết Co^{3+} –N và một liên kết Co^{3+} –O như $[Co(NH_3)_5H_2O]^{3+}$ và $[Co(NH_3)_5NO_2]^{2+}$ đều có màu hồng-đỏ. Như vậy, sự khác nhau về màu sắc của hai đồng phân là sự khác nhau về liên kết của Co^{3+} với nhóm NO_2^- .

THUYẾT LIÊN KẾT HÓA TRỊ (VB)

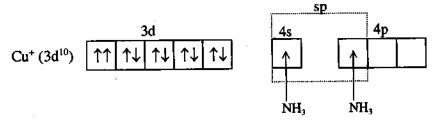

Bản chất của hóa trị phụ trong thuyết phối trí của Vecne càng ngày càng được sáng tỏ trong lí thuyết hiện đại về liên kết hóa học trong phức chất của các kim loại chuyển tiếp: Thuyết liên kết hóa trị, thuyết trường tinh thể và thuyết obitan phân tử.

Thuyết liên kết hóa trị

Năm 1927, thuyết axit-bazơ của Liuyt (xem tập một) coi bazơ là chất cho cặp electron và axit là chất nhận cặp electron:

$$BF_3(k)$$
 + $:NH_3(k)$ = $F_3B \leftarrow NH_3(r)$, axit Liuyt bazo Liuyt muối Liuyt

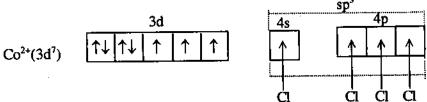
đã được nhà hóa học người Anh Xituyc (N.Sidgwick, 1873-1952) vận dụng vào phức chất. Xituyc coi những amoniacat của coban đã xét trong thuyết phối trí của Vecne là những muối Liuyt:



Vậy phức chất được tạo thành bằng các liên kết cho-nhận giữa cặp electron tự do của phối tử và obitan trống của nguyên tử trung tâm. Kết hợp với khái niệm lai hóa của Paolinh, những obitan trống đó phải là những obitan lai hóa của nguyên tử trung tâm mới có thể tiếp nhận được những cặp electron của phối tử nằm ở những vị trí quyết định cấu hình của phức chất.

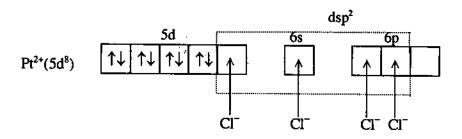
Ví dụ 1. Ion Cu+ kết hợp với: NH₃

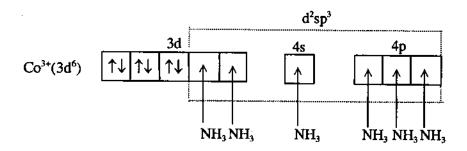
$$Cu^+ + 2NH_3 = [Cu(NH_3)_2]^+$$


tạo nên cation phức $[Cu(NH_3)_2]^+$ đường thẳng nhờ sự tạo thành hai liên kết cho-nhận giữa cặp electron tự do của : NH_3 và hai obitan lai hóa sp trống của ion Cu^+ ($3d^{10}$):

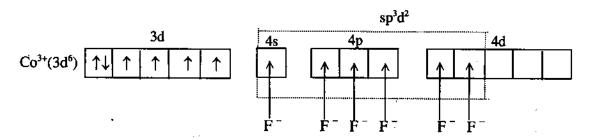
Ví dụ 2. Ion Co2+ kết hợp với ion Cl:

$$Co^{2+} + 4Cl^{-} = [CoCl_4]^{2-}$$


tạo nên anion phức từ diện $[CoCl_4]^2$ nhờ sự tạo thành 4 liên kết cho-nhận giữa cặp electron tự do của ion Cl^2 và obitan lai hóa sp³ trống của ion Co^{2+} (3d⁷):


Ví dụ 3. Ion Pt2+ kết hợp với ion Cl-:

$$Pt^{2+} + 4 Cl^{-} = [PtCl_{4}]^{2-}$$


tạo nên anion phức hình vuông $[PtCl_4]^{2^-}$ nhờ sự tạo thành 4 liên kết cho-nhận giữa cặp electron tự do của ion Cl^- và obitan lai hóa trống dsp^2 của ion $Pt^{2+}(5d^8)$:

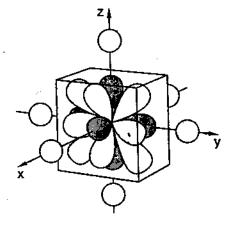
Ví dụ 4. Ion Co³⁺ kết hợp với NH₃ tạo thành cation phức bát diện nhờ 6 liên kết chonhận giữa cặp electron tự do của NH₃ và obitan lai hóa trống d²sp³ của ion Co³⁺(3d⁶):

Trong cation phức $[Co(NH_3)_6]^{3+}$, 6 electron của ion Co^{3+} đều ghép thành cặp nên phức chất có tính nghịch từ. Tuy nhiên không phải tất cả những phức chất bát diện của ion Co^{3+} đều là nghịch từ. Ví dụ như anion phức $[CoF_6]^{3-}$ có tính thuận từ, momen từ đo được của phức chất tương ứng với sự có mặt 4 electron độc thân. Thực tế đó dẫn đến suy nghĩ trong trường hợp này, ion Co^{3+} không ở trạng thái lai hóa d^2sp^3 mà ở trạng thái lai hóa sp^3d^2 , nghĩa là các obitan 4s và 4p không lai hóa với obitan 3d mà với obitan 4d ở ngoài (thường gọi là *sự lai hóa ngoài* để phân biệt với *sự lai hóa trong* là kiểu d^2sp^3):

Momen từ đo được của các ion phức $[Fe(H_2O)_6]^{3+}$ và $[FeF_6]^{3-}$ tương ứng với sự có mặt trong phức chất 5 electron độc thân, của ion phức $[Ni(NH_3)_6]^{2+}$ tương ứng với sự có mặt 2 electron độc thân đều được giải thích bằng giả thiết trạng thái lai hóa sp 3 d 2 của Fe^{3+} và Ni^{2+} .

Ưu điểm của thuyết liên kết hóa trị là mô tả một cách đơn giản và cụ thể các liên kết ơ trong phức chất và giải thích được từ-tính của phức chất. Nhược điểm của thuyết liên kết hóa trị là không giải thích được màu sắc của các phức chất.

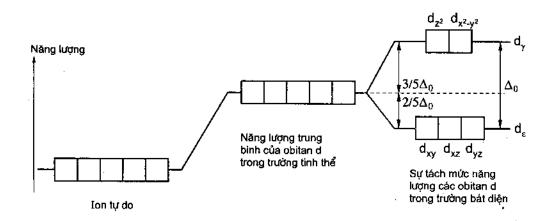
THUYẾT TRƯỜNG TỊNH THỂ


Thuyết trường tinh thể do hai nhà vật lí Beto (H. Bethe) và Viec (V. Vleck) đề ra năm 1933 để giải thích tính chất của các chất dạng tinh thể nên có tên gọi đó. Mãi đến những năm 50 của thế kỉ này mới được áp dụng vào phức chất của kim loại chuyển tiếp là những hệ cũng có sự sắp xếp đều đặn của các hạt mang điện tích.

Khác với thuyết liên kết hóa trị, thuyết trường tinh thể không dựa vào khái niệm lai hóa và sự tạo thành liên kết cho-nhận mà coi sự tạo phức là tương tác tĩnh điện giữa chất tạo phức và phối tử. Thuyết trường tinh thể xét vị trí của các obitan d (hay f) trong không gian của nguyên tử trung tâm và xét lực đẩy electron trên những obitan đó bởi phối tử. Thuyết đó không chú ý đến kích thước và cấu tạo của phối tử mà coi phối tử là những điện tích điểm hay lưỡng cực, chúng được sắp xếp trong không gian như thế nào để năng lượng đẩy giữa các điện tích điểm đó là cực tiểu. Điều này xảy ra khi phối tử sắp xếp tại các đỉnh của hình bát diện (số phối trí của nguyên tử trung tâm là 6) hoặc các đỉnh của hình tứ diện (số phối trí của nguyên tử trung tâm bằng 4). Nếu thuyết liên kết hóa trị coi sự tạo phức sinh ra khi các obitan của nguyên tử trung tâm và phối tử che phủ nhau tạo nên những liên kết σ thì thuyết trường tinh thể cho rằng trong phức chất, những obitan của nguyên tử trung tâm bị những điện tích điểm của phối tử đẩy sẽ sắp xếp như thế nào để tương tác giữa chúng là cực tiểu. Vậy cơ sở của thuyết trường tinh thể là lực đẩy tĩnh điện giữa các electron của phối tử và của nguyên tử trung tâm.

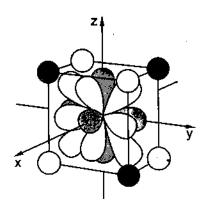
Trong nguyên tử tự do cũng như ion tự do của kim loại chuyển tiếp, các obitan d cùng một lớp (d_{xy}, d_{xz}, d_{yz}, d_{z²} và d_{x²-y²}) có năng lượng như nhau và được gọi là *suy biến*. Nếu phối tử tạo quanh ion kim loại một trường đối xứng cầu (điện tích phân bố đồng đều trên toàn khối cầu) thì sự suy biến về năng lượng vẫn không thay đổi, nghĩa là các obitan d vẫn có năng lượng như nhau mặc dù năng lượng của các obitan d tăng lên do bị phối tử đẩy. Nhưng trong trường không đối xứng cầu như trường bát diện, trường tứ diện (đôi khi trường hình vưông) của phức chất, những obitan d ở gần phối tử bị đẩy mạnh nên năng lượng tăng lên nhiều, còn những obitan d ở xa phối tử bị đẩy yếu nên năng lượng tăng lên ít. Như vậy, khi tạo phức, năng lượng của các obitan đều tāng lên nhưng tăng không đồng đều.

Trước hết chúng ta xét sự biến đổi năng lượng của các obitan d trong phức chất bát diện. Hình 1 trình bày vị trí các obitan d của ion kim loại trong cấu hình bát diện của các phối tử (vòng tròn chỉ vị trí của phối tử, những hình qua bầu tô đen nhạt chỉ obitan d_{z^2} và $d_{x^2-y^2}$ và những quá bầu trắng chỉ những obitan d_{xy} , d_{xz} và d_{yz}).

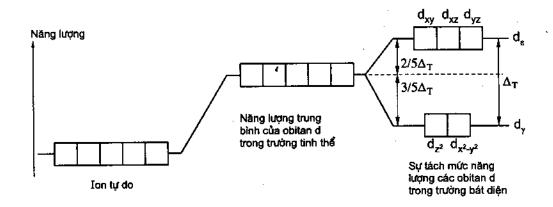

Ta thấy obitan d_{z^2} nằm trên trục z và obitan $d_{x^2-y^2}$ nằm trên trục x và trục y ở gần hơn với các phối tử cùng nằm trên các trục tương ứng nên có

Hình I. Trường bát diện của các phối tử

năng lượng cao còn ba obitan d_{xy} , d_{xz} và d_{yz} nằm trên đường phân giác của các trục x, y, z tương ứng ở xa phối tử hơn nên có năng lượng thấp hơn. Năm obitan của ion kim loại có năng lượng như nhau, trong trường bát diện của phối tử đã phân chia thành hai nhóm: nhóm d_y gồm hai obitan có năng lượng như nhau và cao hơn và nhóm d_z gồm ba obitan có năng lượng như nhau và thấp hơn (Hình 2):

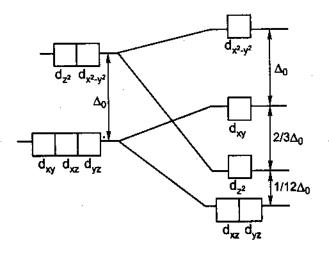


Hình 2. Sự tách các mức năng lượng của obitan d trong phức chất bát diện


Chú ý: Obitan d_{z^2} thực ra là tổ hợp của obitan $d_{z^2-x^2}$ và obitan $d_{z^2-y^2}$, hai obitan này giống với $d_{x^2-y^2}$. Về hình dạng thì 3 obitan $d_{x^2-y^2}$, $d_{z^2-x^2}$ và $d_{z^2-y^2}$ giống với nhau và giống với cả 3 obitan d_{xy} , d_{xz} và d_{yz} .

Trong phức chất từ diện, sự biến đổi năng lượng của các obitan xảy ra ngược lại. Hình 3 trình bày vị trí của các obitan d của ion kim loại trong cấu hình tứ diện của phối tử (vòng tròn trắng chỉ vị trí của 4 phối tử tạo nên một cấu hình tứ diện, vòng tô đen chỉ vị trí của phối tử trong một cấu hình tứ diện khác, các quả bầu chỉ obitan vẫn được biểu diễn giống như hình 1):

Ta thấy trong phức chất tứ diện, ba obitan d_{xy} , d_{xz} và d_{yz} ở gần phối tử hơn hai obitan d_{z^2} và $d_{x^2-y^2}$ nên bị đẩy mạnh hơn và tãng năng lượng nhiều hơn. Vậy năm obitan có năng lượng như nhau của ion tự do, trong trường tứ diện của phối tử cũng phân chia thành hai nhóm nhưng ngược với trong trường bát diện: nhóm d_{ϵ} gồm 3 obitan có năng lượng như nhau và cao hơn và nhóm d_{γ} gồm hai obitan có năng lượng như nhau và thấp hơn (Hình 4):



Hình 3. Trường từ diện của các phối tử

Hình 4. Sự tách các mức năng lượng của obitan d trong phức chất từ diện

Trong trường hình vuông của phối tử, hiện tượng phân chia các mức năng lượng của obitan d phức tạp hơn: obitan $d_{x^2-y^2}$ ở gần phối tử bị đẩy mạnh nhất nên tăng năng lượng, obitan d_{z^2} không chịu ảnh hưởng trực tiếp của phối tử nên hơi giảm năng lượng; trong ba obitan d_{xy} , d_{xz} và d_{yz} , obitan d_{xy} chịu tác dụng trực tiếp hơn nên có năng lượng cao hơn hai obitan còn lại (Hình 5):

Sự tách mức năng lượng các obitan d trong trường bát diện

Sự tách mức năng lượng các obitan d trong trường hình vuông

Hình 5. Sự tách mức năng lượng của obitan d trong phức chất

Như vậy, phức chất hình vuông là một biến dạng của phức chất bát điện, trong đó hai phối tử ở vị trí trans ở trên trục z bị lấy đi. Do đó obitan d_{z^2} được làm bền thêm nhiều so với trong phức chất bát điện và obitan d_{xy} và d_{yz} được làm bền thêm một ít, còn các obitan $d_{x^2-y^2}$ và d_{xy} trở nên kém bền hơn.

Thông số tách năng lượng

Hiệu năng lượng của obitan d "cao" và obitan d "thấp" được gọi là thông số tách năng lượng, kí hiệu là Δ . Trong phức chất bát diện, so với mức năng lượng trung bình của obitan d trong trường tinh thể (Hình 2), mỗi electron chiếm những obitan d_{z²} và d_{x²-y²} (kí hiệu là d_y) có năng lượng cao hơn là $3/5\Delta_0$ (Δ_0 là thông số tách năng lượng trong trường bát diện, o là chữ cái đứng đầu chữ octaèdre là bát diện) và mỗi electron chiếm obitan d_{xy}, d_{xz} và d_{yz} (kí hiệu là d_e) có năng lượng thấp hơn là $2/5\Delta_0$. Ngược lại, trong phức chất tứ diện, mỗi electron chiếm các obitan d_{xy}, d_{xz} và d_{yz} có năng lượng cao hơn là $2/5\Delta_T$ (Δ_T là thông số tách năng lượng trong trường tứ diện, t là chữ cái đứng đầu chữ tetraèdre là tứ diện) và mỗi electron chiếm các obitan d_{z²} và d_{z²-y²} có năng lượng thấp hơn là $3/5\Delta_T$ (Hình 4).

Thông số tách năng lượng Δ phụ thuộc vào cấu hình của phức chất, bản chất của ion trung tâm và bản chất của phối tử.

- Phức chất bát diện có thông số tách năng lượng $\Delta_{\rm O}$ lớn hơn thông số tách năng lượng $\Delta_{\rm T}$ của phức chất tứ diện. Nếu có cùng phối tử và cùng ion trung tâm, phức chất tứ diện có thông số tách năng lượng bằng bốn phần chín thông số tách năng lượng của phức chất bát diện $(\Delta_{\rm T}=4/9\Delta_{\rm O})$. Tổng các thông số tách năng lượng $\Delta_{\rm C}$ của phức chất hình vuông (chữ cái c đứng đầu chữ carée là hình vuông) lớn hơn $\Delta_{\rm O}$.
- Điện tích của ion trung tâm có ảnh hưởng đến Δ : ion có điện tích lớn có Δ lớn. Sở dĩ như vậy là vì ion có điện tích lớn hút mạnh phối tử về nó và electron của phối tử đẩy mạnh các electron d nên gây tách, một mức độ lớn, mức năng lượng các obitan d. Ví dụ như các ion phức $[Cr(H_2O)_6]^{2+}$ và $[Co(NH_3)_6]^{2+}$ có Δ_O bé hơn các ion phức $[Cr(H_2O)_6]^{3+}$ và $[Co(NH_3)_6]^{3+}$ tương ứng (xem bảng 1).

Kích thước của ion trung tâm cũng có ảnh hưởng đến Δ . Ví dụ như ion phức của Cr^{3+} có Δ bé hơn ion phức tương tự của Rh^{3+} và Ir^{3+} (xem bảng 1). Những ion trung tâm thuộc các dãy kim loại chuyển tiếp thứ hai và thứ ba luôn luôn có Δ lớn hơn so với dãy kim loại chuyển tiếp thứ nhất. Điều này được giải thích là bán kính lớn của ion trung tâm tạo điều kiện cho các phối tử đến gần và do đó electron của phối tử gây tách, một mức độ lớn, mức năng lượng các obitan d của ion trung tâm.

			Cr ²⁺ ,	, Cr ³⁺ , Mo ³⁺	
[CrCl ₆]⁴⁻	13.000	[CrCl ₆] ³	13.200	[MoCl ₆] ³⁻	19.200
$[Cr(H_2O)_6]^{2+}$	14.000	$[\mathrm{Cr}(\mathrm{H_2O})_6]^{3+}$	17.400		
		$[Cr(NH_3)_6]^{3+}$	21.500		
$[\operatorname{Cr}(\operatorname{en})_3]^{2+}$	18.000	$[\operatorname{Cr}(\operatorname{en})_3]^{3+}$	21.900		
		[Cr(CN) ₆] ³⁻	26.600		
			Co²+, C	o ³⁺ , Rh ³⁺ , Ir ³⁺	
[Co(H ₂ O) ₆] ²⁺	9.300	[Co(H ₂ O) ₆] ³⁺	18.200	[RhCl ₆] ³	20.000 [IrCl ₆] ³ · 25.00
$[Co(NH_3)_6]^{2+}$	10.100	$[\text{Co(NH}_3)_6]^{3+}$	22.900	$[Rh(H_2O)_6]^{3+}$	27.000 [lr(NH ₃) ₆] ³⁺ 41.00
$[\mathrm{Co}(\mathrm{en})_3]^{2+}$	11.000	$[\mathrm{Co(en)_3}]^{3+}$	23.200	$[Rh(NH_3)_6]^{3+}$	34.100 $[Ir(en)_3]^{3+}$ 41.40
		$[Co(CN)_6]^{3-}$	33.500	$[Rh(en)_3]^{3+}$	34.600
· .		<u></u> .		[Rh(CN) ₆] ³⁻	45.500
·		-	Mn	²⁺ , Mn ³⁺	
[MnCl ₆] ⁴⁻	7.500	[MnCl ₆] ³⁻	20.000		
Mn(H2O)6]2+	8.500	$[Mn(H_2O)_6]^{3+}$	21.000		
$Mn(en)_3]^{2+}$	10.100				
		<u>, , , , , , , , , , , , , , , , , , , </u>	Fe ²	²⁺ , Fe ³⁺	
Fe(H ₂ O) ₆] ²⁺	8.500	[FeCl ₆] ³	11.000		· , , , , , , , , , , , , , , , , , , ,
Fe(CN) ₆] ⁴	32.800	$[Fe(H_2O)_6]^{3+}$	14.300		
		[Fe(CN) ₆] ³⁻	35.000		

en = etylendiamin, 1cm⁻¹= 11,96 J/mol

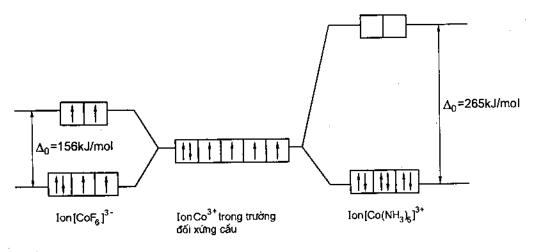
⁻ Phối tử có ảnh hưởng mạnh đến thông số tách năng lượng Δ của phức chất. Bảng 1 ghi thông số tách Δ_0 trong phức chất của 11 cation kim loại với 5 phối tử. Bảng cho thấy khả năng gây tách của các phối tử đó tăng lên theo thứ tự: Cl^- , H_2O , NH_3 , en và CN^- , nghĩa là Cl^- là phối tử gây trường mạnh nhất trong 5 phối tử đó.

Dựa vào giá trị thông số tách năng lượng Δ xác định được bằng thực nghiệm trong các phức chất bát diện, người ta xếp các phối tử theo thứ tự lực trường tinh thể:

$$I^{-} < Br^{-} < Cl^{-} < SCN^{-} < F^{-} < OH^{-} < C_{2}O_{4}^{2+} < H_{2}O < NCS^{-} < py < NH_{3} < en < dipy < NO_{2}^{-} < CN^{-} < CO.$$

Dãy phối tử được gọi là dãy phổ hóa học, trong đó phối tử đứng trước có trường yếu hơn phối tử đứng sau. Những phối tử đứng trước NH₃ thường là phối tử gây trường yếu và những phối tử đứng sau NH₃ là phối tử gây trường mạnh.

Giải thích từ-tính của phức chất theo thuyết trường tinh thể


Thuyết trường tinh thể cũng như thuyết liên kết hóa trị đều tính số electron ghép đôi và số electron độc thân của ion kim loại trong phúc chất. Theo thuyết trường tinh thể, khả năng ghép đôi của electron trong phúc chất có liên quan với thông số tách năng lượng Δ . Nếu năng lượng P cần thiết để ghép đôi hai electron lớn hơn Δ thì 5 obitan d của ion trung tâm lần lượt được điền mỗi obitan một electron rồi sau đó điển tiếp electron thứ hai và phức chất có spin cao. Nếu năng lượng P lớn hơn thì trước hết electron được điền đủ cặp vào những obitan có năng lượng thấp và phức chất có spin thấp.

Để làm ví dụ, chúng ta xét sự sắp xếp electron trên các obitan d của ion Co^{3+} trong các ion phức bát diện $[\text{CoF}_6]^3$ và $[\text{Co}(\text{NH}_3)_6]^{3+}$.

Ion Co3+ tự do có cấu hình electron:

$$Co^{3+}(3d)$$
 $\uparrow\downarrow$ \uparrow \uparrow \uparrow \uparrow

Người ta xác định được năng lượng ghép đôi P của các electron trên cùng một obitan trong ion Co^{3+} là 251kJ/mol và thông số tách năng lượng Δ_{O} của $[\text{CoF}_6]^3$ là 156kJ/mol và của $[\text{Co}(\text{NH}_3)_6]^{3+}$ là 265kJ/mol nên 6 electron 3d của ion Co^{3+} trong hai ion phức đó được sắp xếp như hình 6 trình bày:

Hình 6. Cách sắp xếp 6 electron d của ion Co^{3+} trong ion $[CoF_6]^{3+}$ và ion $[Co(NH_3)_6]^{3+}$

Như vậy trong trường yếu của các ion F^- , thông số tách năng lượng Δ có giá trị bé nên số electron được sắp xếp trên các obitan d đã tách của ion Co^{3+} cũng giống như trong ion tự do và $[CoF_6]^{3-}$ là phức chất spin cao (có 4 electron độc thân). Nhưng trong trường mạnh tạo nên bởi các phân tử NH_3 , thông số tách năng lượng Δ có giá trị lớn nên các electron chỉ được sắp xếp trên các obitan d có năng lượng thấp và $\{Co(NH_3)_6\}^{3+}$ là phức chất spin thấp (không có electron độc thân). Những phức chất spin cao là chất thuận từ còn những phức chất spin thấp chỉ có thể là chất thuận từ nếu có electron độc thân hoặc là chất nghịch từ nếu không có electron độc thân.

Bảng 2 trình bày thông số tách năng lượng Δ xác định bằng thực nghiệm của một số phức chất bát diện, năng lượng ghép đôi P của ion kim loại tính được từ cơ học lượng tử và trạng thái spin của ion phức xác định được khi đo từ-tính của chất. Qua bảng ta thấy trạng thái spin của ion phức phù hợp với thuyết trường tinh thể.

Bảng 2

Thông số tách và năng lượng ghép đôi P của một số ion phức bát diện

Cấu hình electron của ion	Ion	P, kJ/mol	Phối tử	Δ, kJ/mol	Trạng thái spin
3ď ⁴	Cr ²⁺	281	H₂O	166	cao
	Mn^{3+}	335	H ₂ O	- 251	cao
3d ⁵	Mn ²⁺	305	H ₂ O	93	cao
	Fe ³⁺	359	.H ₂ O	163	cao .
3d ⁶	Fe ²⁺	210	H₂O	124	cao
:			CN-	395	thấp
	Co3+	251	F-	155	cao
			NH ₃	275	thấp
3d ⁷	Co ²⁺	269	H₂O	111	cao

Phức chất tử diện có thông số tách năng lượng Δ bé hơn so với phức chất bát điện nên thường là hợp chất spin cao phổ biến hơn phức chất bát điện.

Phức chất của ion kim loại chuyển tiếp các dãy thứ hai và thứ ba có thông số tách năng lượng Δ lớn hơn so với phức chất tương tự của các kim loại chuyển tiếp dãy thứ nhất nên hầu như luôn có spin thấp.

Năng lượng làm bền bởi trường tinh thể

Theo thuyết trường tinh thể, khi tạo phức một mức năng lượng suy biến của 5 obitan d của ion trung tâm có thể tách thành một số mức (2 trong trường bát diện và trường tứ diện và 4 trong trường hình vuông của phối tử) năng lượng khác nhau. Nếu electron điền vào obitan d có mức năng lượng thấp hơn năng lượng trung bình của obitan trong trường tinh thể (các hình 2 và 4) thì năng lượng giảm xuống. Năng lượng giảm đó được gọi là năng lượng làm bền bởi trường tinh thể (viết tắt là LB).

Trong trường bát diện của phối tử, năng lượng LB lớn nhất khi các obitan d_{ϵ} điền đủ electron còn các obitan d_{γ} trống electron $(d_{\epsilon}^6 d_{\gamma}^0)$. Năng lượng LB đó bằng $6 \times 2/5\Delta_0 = 12/5\Delta_0$. Ngược lại khi tất cả các obitan d_{γ} đều điền đủ electron $(d_{\epsilon}^6 d_{\gamma}^4)$, năng lượng LB bằng số không vì $6 \times 2/5\Delta_0 = 4 \times 3/5\Delta_0 = 0$. Trong phức chất bát diện spin cao (trường yếu), khi ion trung tâm có cấu hình electron d_{ϵ}^5 , mỗi một obitan có một electron $(d_{\epsilon}^3 d_{\gamma}^4)$, năng lượng LB cũng bằng số không vì $3 \times 2/5\Delta_0 = 2 \times 3/5\Delta_0 = 0$.

Như vậy trong phức chất spin cao, năng lượng LB lớn nhất ở phức chất của Cr(III) và trong phức chất spin thấp, năng lượng LB lớn nhất ở phức chất của Co(III). Ion Cr³+ trong phức chất có cấu hình electron $d_{\epsilon}^3 d_{\gamma}^0$ và năng lượng LB là $3 \times 2/5\Delta_0 = 6/5\Delta_0$. Ion Co³+ trong phức chất có cấu hình electron $d_{\epsilon}^6 d_{\gamma}^0$ và năng lượng LB là $6 \times 2/5\Delta_0 = 12/5\Delta_0$. Khi thêm hay bốt electron của các cấu hình electron đó, năng lượng LB đều giảm xuống. Ví dụ ion Ni³+ hay ion Co²+ trong phức chất có cấu hình electron $d_{\epsilon}^6 d_{\gamma}^1$ và năng lượng LB là $6 \times 2/5\Delta_0$ ~3/5 $\Delta_0 = 9/5\Delta_0$, bé hơn so với ion Co³+ hay ion Fe²+.

Năng lượng LB cao giải thích tính trơ động học của phức chất spin thấp của Co(III) và tính không bền động học của phức chất của Fe(III) có cấu hình d⁵ so với phức chất của Fe(III) có cấu hình d⁶. Ví dụ như hexaxianoferat(III) kém bền động học hơn (do đó có độc tính) hexaxianoferat(II) vì có năng lượng LB thấp hơn. Khái niệm tính trơ động học và tính không bền động học của phức chất đã được Taube (Henri Taube, giải thưởng Noben năm 1983 về thành tựu này) đề ra để chỉ tốc độ phản ứng (chủ yếu của phản ứng thay thế phối tử). Tính bền động học có liên quan với năng lượng hoạt hóa của phản ứng và khác với tính bền nhiệt động học có liên quan đến biến thiên năng lượng Gip, entanpi và entropi của hợp chất.

Khi tính năng lượng LB của các phức chất bát điện của kim loại chuyển tiếp, nhận thấy phức chất của những ion trung tâm có cấu hình d⁰, d¹, d², d³, d⁸, d⁹ và d¹⁰ với phối tử trường mạnh hay trường yếu đều có năng lượng LB như nhau nhưng phức chất của những ion trung tâm d⁴, d⁵, d⁶ và d⁷ với phối tử trường mạnh có năng lượng LB lớn hơn nhiều so với phối tử trường yếu.

Phức chất tứ diện có Δ_T bé hơn Δ_O của phức chất bát diện. Tuy nhiên có trường hợp

000

xác suất tạo thành cấu hình bát diện và cấu hình tứ diện là gần như nhau, ví dụ như phức chất của Co(II) với cấu hình d⁷. Trong trường bát diện yếu, cấu hình electron d⁷ ở dạng d $_{\epsilon}^{5}$ d $_{\gamma}^{2}$ và trong trường tứ diện, ở dạng d $_{\gamma}^{4}$ d $_{\epsilon}^{3}$. Năng lượng LB của phức chất bát diện là $5 \times 2/5\Delta_{\odot}$ - $2 \times 3/5\Delta_{\odot} = 4/5\Delta_{\odot}$ và của phức chất tứ diện là $4 \times 3/5\Delta_{\odot} - 3 \times 2/5\Delta_{\odot} = 6/5\Delta_{\odot}$. Vì $\Delta_{T} = 4/9\Delta_{\odot}$ nên $6/5\Delta_{T} = 6/5 \times 4/9\Delta_{\odot} = 3/5\Delta_{\odot}$. Tính toán một cách đơn giản như vậy ta thấy năng lượng LB của hai trường hợp là gần như nhau: $3/5\Delta_{\odot}$ (trường tứ diện) và $4/5\Delta_{\odot}$ (trường bát diện). Thật vậy, ion Co²⁺ tạo nên phức chất bát diện với F^{-} , $H_{2}O$, NH_{3} , etylenđiamin và phức chất tứ diện với Cl^{-} , Br^{-} , OH^{-} , SCN^{-} .

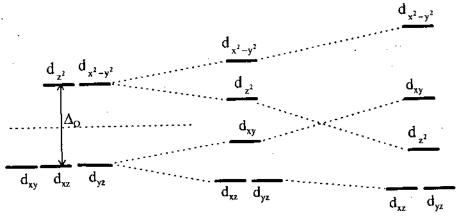
Ion Ni^{2+} (d^8) trong phức chất bát diện trường mạnh cũng như trường yếu đều có cùng một cấu hình $\mathrm{d}_{\varepsilon}^6\mathrm{d}_{\gamma}^2$. Nhưng đối với cấu hình hình vuông thì sự tạo phức trong trường mạnh là thuận tiện hơn so với trong trường yếu vì cả 8 electron đều điền vào những obitan năng lượng thấp ($\mathrm{d}_{xz}^2\mathrm{d}_{yz}^2\mathrm{d}_{z^2}^2\mathrm{d}_{xy}^2$) làm cho năng lượng LB là cực đại. Thật vậy, đa số phức chất của Ni^{2+} có cấu hình bát diện, một số ít phức chất hình vuông được tạo nên với phối tử trường mạnh như CN, đimetylglioxim trong khi tất cả phức chất của Pd^{2+} , Pt^{2+} và Au^{3+} có cấu hình hình vuông vì đối với những nguyên tố $\mathrm{4d}$ và $\mathrm{5d}$, thông số tách năng lượng $\mathrm{\Delta}$ luôn luôn lớn hơn so với nguyên tố $\mathrm{3d}$ (thông số tách $\mathrm{\Delta}$ càng lớn, năng lượng của obitan $\mathrm{d}_{x^2-y^2}$ càng cao và năng lượng của các obitan còn lại càng thấp).

Hiệu ứng Jan-Telơ

Khi hai phối tử ở vị trí trans trong phức chất bát diện (ở trên trục z chẳng hạn) dịch chuyển ra xa hay gần ion trung tâm hơn so với các phối tử khác, người ta nói phức chất bát diện bị biến dạng kiểu tứ phương (cấu hình đó gọi chung là bát diện lệch). Sự biến dạng kiểu tứ phương của phức chất bát diện là biểu hiện của hiệu ứng Jan-Telo. Năm 1937, Jan và Telo (A. Jan và E. Teller) phát biểu rằng trạng thái electron suy biến của một phân tử không thẳng hàng là không bền, phân tử sẽ biến dạng hình học để giảm tính đối xứng và độ suy biến.

Để làm ví dụ chúng ta xét phức chất bát diện của ion Cu^{2+} (d^9). Cấu hình electron của Cu^{2+} trong phức chất bát diện là $d_{\varepsilon}^6 d_{\gamma}^3$. Vì trên các obitan d_{γ} có 3 electron nên có hai cách sắp xép electron: 2 electron trên d_{z^2} và một electron trên $d_{x^2-y^2}$ hay một electron trên d_{z^2} và hai electron trên $d_{x^2-y^2}$. Hai cấu hình electron $d_{z^2}^2 d_{x^2-y^2}^1$ và $d_{z^2}^1 d_{x^2-y^2}^2$ có cùng một mức năng lượng nên trạng thái electron của Cu^{2+} trong phức chất bát diện là suy biến bậc hai. Theo định lí Jan-Telơ, trạng thái electron đó là không bền nên phức chất bát diện của Cu^{2+} phải biến dạng để hai cấu hình electron đó trở nên khác nhau về năng lượng.

Với cấu hình electron $d_{z^2}^2 d_{x^2-y^2}^1$, những phối tử ở trên trục z bị chắn với hạt nhân của ion Cu^{2+} mạnh hơn so với những phối tử ở trên trục x và trục y nên những phối tử ở trên trục z


ở xa ion kim loại hơn các phối tử khác tạo nên một cấu hình bát diện lệch kéo dài theo phương trục z và obitan $\mathbf{d}_{\mathbf{z}^2}$ trở nên bền hơn obitan $\mathbf{d}_{\mathbf{x}^2-\mathbf{y}^2}$ nghĩa là độ suy biến giảm.

Tất nhiên với cấu hình electron $d_{z^2}^1 d_{x^2-y^2}^2$, sự biến dạng của phức chất bát diện xảy ra ngược lại: các phối tử trên trục x và trục y ở xa ion kim loại hơn hai phối tử ở trên trục z tạo nên một cấu hình bát diện dẹt theo phương trục z.

Thực tế người ta chỉ quan sát được kiểu biến dạng dọc theo phương của một trục ở trong nhiều phức chất bát diện của Cu²⁺. Ví dụ trong tinh thể muối đồng(II) halogenua, thực nghiệm xác định được hai loại độ dài của liên kết Cu-X (bằng Å):

CuX ₂	Liên kết ngắn	Liên kết dài	
CuF ₂	0,193	0,227	
CuCl ₂	0,230	0,295	
CuBr ₂	0,240	0,38	

Trong sự biến dạng dọc theo phương của trục z, không chỉ độ suy biến của hai obitan d_{ϵ} giảm mà cả độ suy biến của ba obitan d_{γ} cũng giảm, hai obitan d_{xz} và $d_{\gamma z}$ được làm bền thêm còn obitan d_{xy} bị giảm độ bền. Như vậy từ hai mức năng lượng d_{ϵ} và d_{γ} trong trường bát diện, khi bị biến dạng kiểu tứ phương đã tách thành 4 mức. Khi phối tử ở trên trục z rời xa hản ion trung tâm thì phức chất bát diện trở thành hình vuông, trong đó 4 mức năng lượng biến đổi mạnh hơn nữa (Hình 7). Mỗi vạch ngang trong sơ đồ của hình này chỉ mức năng lượng của một obitan d.

Bát diện

Bát diện lệch (chóp kép tứ giác)

Hình vuông

Hình 7. Sự hiến đổi mức năng lượng của các obitan d của nguyên tử kim loại ở trong 3 trường: hát diện, hát diện lệch kéo dài và hình vuông.

Qua sơ đồ, ta thấy rõ dạng bát diện lệch kiểu tứ phương (hay cấu hình chóp kép tứ giác) là trung gian giữa cấu hình bát diện và cấu hình hình vuông. Đối với những ion trung tâm có cấu hình $d_{\epsilon}^6 d_{\gamma}^2$ và $d_{\epsilon}^6 d_{\gamma}^3$, việc chuyển phức chất bát diện thành phức chất hình vuông là thuận lợi về mặt năng lượng. Thật vậy, những phối tử trường mạnh như NH₃, etylenđiamin dễ thay thế những phân tử H₂O trong ion phức bát diện $[Cu(H_2O)_6]^{2+}$ tạo thành những ion phức hình vuông $[Cu(NH_3)_4]^{2+}$, $[Cu(en)_2]^{2+}$.

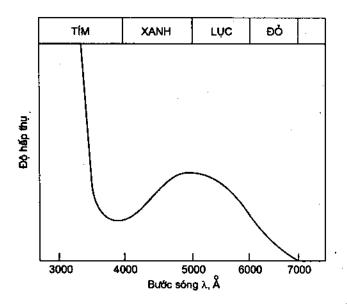
Hiệu ứng Jan-Telơ thể hiện mạnh nhất ở các phức chất có cấu hình electron của ion trung tâm là $d_{\epsilon}^3 d_{\gamma}^1$ và ở các phức chất spin thấp có cấu hình electron của ion trung tâm là $d_{\epsilon}^6 d_{\gamma}^1$. Thật vậy, phức chất bát diện của những ion Cr^{2+} và Co^{2+} đều bị biến dạng.

Phổ hấp thu và màu của phức chất

Màu của chất. Như đã biết màu là kết quả của sự hấp thụ một phần ánh sáng trông thấy. Những bức xạ không bị chất hấp thụ được phản chiếu hoặc truyền qua chất đi đến mắt người ta và gây nên cảm giác màu (Bảng 3).

Bảng 3. Bước sóng của ánh sáng trông thấy và màu

Bước sóng của bức xạ bị hấp thụ, Å	Màu của bức xạ bị hấp thụ	Màu trông thấy (màu phụ)	
4000-4350	tím	vàng-lục	
4350-4800	4350-4800 xanh chàm		
4800-4900	chàm-lục	da cam	
4900-5000	lục-chàm } lam	đỏ	
5000-5600	lục	đỏ tía	
5600-5750	lục-vàng	tím	
5750-5900	vàng	xanh chàm	
5900-6050	da cam	chàm-lục	
6050-7300	đỏ	lục-chàm	
7300-7600	đỏ tía	lục	


Khi hấp thụ hoàn toàn ánh sáng, chất có màu đen và khi không hấp thụ ánh sáng, chất trong suốt hoặc có màu trắng.

Phổ hấp thụ. Đường cong biểu diễn sự biến đổi của độ hấp thụ ánh sáng theo bước sóng được gọi là phổ hấp thụ. Trong phổ hấp thụ có những vùng tại đó cường độ của ánh sáng

truyền qua bé hơn cường độ ánh sáng tới, được gọi là dải hấp thụ. Cực đại của dải hấp thụ xác định màu và cường độ của màu.

Một trong những thành tựu nổi bật của thuyết trường tinh thể là giải thích nguyên nhân sinh ra phổ hấp thụ của phức chất các kim loại chuyển tiếp. Phổ hấp thụ của đa số phức chất của nguyên tố d gây nên bởi sự chuyển dời electron từ obitan d có năng lượng thấp đến obitan d có năng lượng cao thường gọi là sự chuyển dời d-d. Bởi vậy, phổ hấp thụ của các chất thường được gọi là phổ hấp thụ electron.

Để làm ví dụ, chúng ta xét phổ hấp thụ của ion bát diện $[Ti(H_2O)_6]^{3+}$ (Hình 8):

Hình 8. Phổ hấp thụ của [Ti(H₂O)₆]³⁺

Dải hấp thụ có cực đại ở bước sóng 4926Å (thường lấy gần đúng là 5000Å) hay tần số 20300 cm^{-1} . Như vậy, ion $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$ hấp thụ ánh sáng vùng lục và cho đi qua ánh sáng vùng đỏ và vùng xanh nên có màu tím.

Ion Ti^{3+} có cấu hình electron d¹. Theo thuyết trường tinh thể, electron d duy nhất đó trong ion phức $[Ti(H_2O)_6]^{3+}$ chiếm một trong 3 obitan d có năng lượng thấp d¹. Dưới tác dụng của ánh sáng, ion phức hấp thụ một lượng tử năng lượng $E = h\nu$ và biến năng lượng đó thành năng lượng kích thích electron chuyển dời từ dạ đến dγ:

$$d_{\varepsilon}^{\dagger}d_{\gamma}^{0} \xrightarrow{h\nu} d_{\varepsilon}^{0}d_{\gamma}^{1}$$

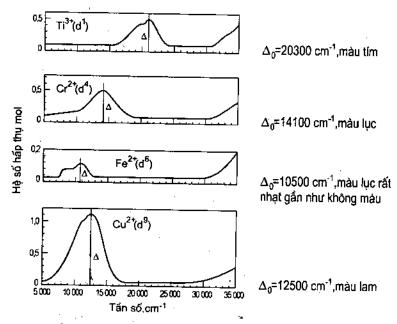
Năng lượng đó chính là thông số tách năng lượng Δ_0 =242,8 kJ/mol của ion phức bát diện $\{Ti(H_2O)_6\}^{3+}$ và có thể tính được từ bước sóng của bức xạ bị hấp thụ cực đại theo phương trình:

$$\Delta_{O} = h \frac{c}{\lambda} N$$

(trong đó h là hằng số Pl
ăng tính bằng J.s, C là tốc độ ánh sáng tính bằng m/s, N là số Avoga
đro và $\Delta_{\rm O}$ tính bằng J)

$$\Delta_{O} = \frac{(6,626 \times 10^{-34} \text{ J.s})(3,00 \times 10^{8} \text{ m/s})}{4926 \times 10^{-10} \text{ m}} \times \underbrace{6,623 \times 10^{23}}_{\text{so ion/mol}} \times \underbrace{6,623 \times 10^{23}}_{\text{so ion/mol}}$$

$$= 242800 \text{ J/mol}$$


$$= 242,8 \text{ kJ/mol}$$

Nếu tính bằng cm $^{-1}$ thì năng lượng Δ_0 này đúng bằng số sóng v' (số sóng cũng được

gọi là tấn số):
$$v' = \frac{1}{\lambda} = \frac{1}{4926 \times 10^{-8}} = 20300 \text{cm}^{-1}$$

Bởi vậy, tuy cm⁻¹ không phải là đơn vị đo năng lượng nhưng do tiện lợi người ta cũng hay biểu diễn thông số tách năng lượng Δ trong trường tinh thể bằng cm⁻¹ (xem bảng 1).

Đối với những ion kim loại chuyển tiếp có 2 electron d trở lên, nghĩa là có cấu hình electron dⁿ, n>1, sự chuyển dời electron từ mức năng lượng thấp đến mức năng lượng cao không chỉ của một electron mà của một số electron nên sinh ra một số dải hấp thụ ví dụ phổ hấp thụ của phức chất bát diện của những ion d^2 , d^3 , d^7 và d^8 gồm có ba dải. Để lí giải phổ hấp thụ phức tạp hơn đó theo thuyết trường tinh thể đòi hỏi sự phát triển hơn nữa về lí thuyết (không trình bày trong khuôn khổ của giáo trình cơ bản này). Tuy nhiên đối với phức chất bát diện của những kim loại chuyển tiếp có cấu hình electron d^4 , d^6 và d^9 , phổ hấp thụ chỉ có một dải tương tự cấu hình d^1 , ví dụ như phổ hấp thụ của các ion phức $[{\rm Ti}(H_2O)_6]^{3+}$, $[{\rm Cr}(H_2O)_6]^{2+}$, $[{\rm Fe}(H_2O)_6]^{2+}$ và $[{\rm Cu}(H_2O)_6]^{2+}$ được trình bày trên hình 9:

Hình 9. Phổ hấp thụ của dung dịch các muối của Ti3+, Cr2+, Fe2+ và Cu2+

3000

Đến đây chúng ta hiểu dễ dàng tại sao phức chất của $Cu^+(d^{10})$ không có màu, trong khi phức chất của $Cu^{2+}(d^9)$ có màu, phức chất của Ag^+ , Zn^{2+} , Cd^{2+} và $Hg^{2+}(d^{10})$ đều không có màu.

Cường độ màu. Cường độ màu, tức là cường độ của dải hấp thụ, phụ thuộc vào mức độ "ngăn cấm" sự chuyển dời electron d-d. Trong các quy tắc lọc lựa của hóa học lượng tử, quan trọng nhất là những ngăn cấm chuyển dời electron về spin và về tính đối xứng.

Quy tắc lọc lựa spin ngăn cấm bất kì sự chuyển dời electron nào làm biến đổi tổng spin của hệ. Ví dụ như ngăn cấm sự chuyển dời electron d-d trong phức chất bát diện spin cao của ion trung tâm có cấu hình electron d 5 ($d_s^3 d_\gamma^2$). Bởi vậy, các ion FeF_6^{3-} và $\text{Mn}(\text{H}_2\text{O})_6^{2+}$ có màu yếu đến mức có thể xem là thực tế không màu. Sự ngăn cấm về spin cũng tác dụng đến phức chất bát diện spin thấp của ion trung tâm có cấu hình electron $d^6(d_s^6 d_\gamma^0)$. Thật vậy, bất kì sự chuyển dời một electron nào trong hệ đó cũng làm biến đổi tổng spin của hệ cho nên bị ngăn cấm.

Quy tắc lọc lựa Lapo (Laport) hạn chế sự chuyển dời electron bởi tính đối xứng của phức chất. Trong những phức chất không có tâm đối xứng, ví dụ như phức chất tứ diện, sự chuyển dời electron d-d là được phép. Ngược lại trong phức chất bát diện, sự chuyển dời electron d-d bị ngăn cấm vì cấu hình bát diện có tâm đối xứng. Sự ngăn cấm về tính đối xứng giải thích tại sao phức chất tứ diện có màu đậm hơn phức chất bát diện của cùng một ion trung tâm kim loại. Ví dụ đối với Fe^{3+} , ion phức $\text{Fe}F_6^{3-}$ không có màu nhưng ion phức FeCl_4^- có màu vàng và đối với ion Co^{2+} , ion phức $\text{Co}(\text{H}_2\text{O})_6^{2+}$ có màu hồng rất nhạt trong khi ion phức CoCl_4^- có màu xanh chàm đậm.

Tuy nhiên trong các hệ thực, sự ngăn cấm về spin có thể bị loại bỏ một phần ví dụ do tương tác spin-obitan và sự ngăn cấm về tính đối xứng cũng có thể bị loại bỏ do sự sai lệch của đa diện có tâm đối xứng, ví dụ vì hiệu ứng Jan-Telo chẳng hạn...

Biểu hiện quan trọng của sự ngăn cấm chuyển dời electron d-d là màu yếu của phức chất, cụ thể là cường độ thấp của đải hấp thụ trong phổ electron. Thước đo cường độ hấp thụ bức xạ là $h\hat{e}$ số hấp thụ ϵ . Hệ số này liên hệ với mật quang D, đo được bằng thực nghiệm trên máy trắc quang, bởi hệ thức của định luật Lambe-Bia (Lambert-Beer):

$$D = \varepsilon Cl$$

trong đó mật quang $D = lg \frac{I_o}{I}$ (ở đây I_o là cường độ của ánh sáng đi tới dung dịch của chất và I là cường độ ánh sáng đi qua dung dịch, C là nồng độ của dung dịch tính bằng mol/l và I là bề dày của lớp dung dịch. Khi C = 1mol/l và I = 1cm thì $\epsilon = A$ và hệ số hấp thụ mol ϵ chỉ phụ thuộc vào bản chất của chất trong dung dịch. Hệ số hấp thụ mol ϵ của phức chất bát diện ở trong khoảng $5 \div 500$, ví dụ của ion $Ti(H_2O)_6$ là 5 và của phức chất tứ diện ở trong khoảng $200 \div 5000$, ví dụ của ion $CoCl_4^-$ là gần 600.

Như vậy, ưu điểm nổi bật hơn của thuyết trường tinh thể so với thuyết liên kết hóa trị là giải thích được phổ hấp thụ (hay màu) của phức chất các kim loại chuyển tiếp cho nên về sau thuyết đã được Ogen (L.Orgel), Tanabe (Y.Tanabe) và Sugano (S.Sugano) tiếp tục phát triển.

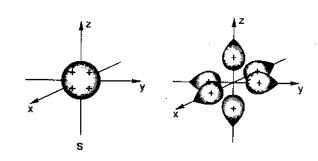
Tuy nhiên thuyết trường tinh thể vì coi liên kết kim loại – phối tử là liên kết ion và chỉ chú ý đến obitan nguyên tử của kim loại mà bỏ qua obitan nguyên tử của phối tử nên có một số hạn chế:

- Nếu liên kết kim loại phối tử là liên kết ion thì tại sao những phân tử trung hòa H_2O , NH_3 lại có lực trường mạnh hơn những anion OH^- , CI^- , F^- ..., phân tử H_2O có cực mạnh hơn phân tử NH_3 lại có lực trường kém hơn, ion CN^- có bán kính lớn hơn ion F^- nhưng có lực trường mạnh hơn rất nhiều mặc dù đều mang một điện tích âm.
 - Không giải thích được phổ chuyển dịch điện tích (sẽ xét sau).
- Không đề cập đến liên kết π mặc dù liên kết đó gặp nhiều trong phức chất, nhất là những phức chất với CO, anken, ankin, xiclopentađien ...

THUYẾT OBITAN PHÂN TỬ (MO)

Thuyết liên kết hóa trị coi liên kết kim loại – phối tử là thuần túy cộng hóa trị và thuyết trường tinh thể coi liên kết đó là thuần tuý ion trong khi thực tế liên kết kim loại – phối tử trong hầu hết phức chất có một phần cộng hóa trị. Bởi vậy, thuyết obitan phân tử tỏ ra bao quát và chính xác hơn khi giải thích cấu tạo và tính chất của các phức chất.

Thuyết obitan phân tử coi phân tử phức chất, cũng như phân tử hợp chất đơn giản, là một hạt thống nhất bao gồm nguyên tử trung tâm và các phối tử. Chuyển động của electron trong phân tử được mô tả bằng một hàm sóng ψ gọi là obitan phân tử (MO). Obitan phân tử tổ hợp tuyến tính các obitan nguyên tử của nguyên tử trung tâm và phối tử. Điều kiện để các obitan nguyên tử tổ hợp với nhau là chúng có thể che phủ nhau, nghĩa là có cùng kiểu đối


xứng. Obitan phân tử được tổ hợp nên có năng lượng thấp hơn các obitan nguyên tử là obitan phân tử liên kết (MO^{tk}) và obitan phân tử được tổ hợp nên có năng lượng cao hơn là obitan phân tử phản liên kết (MO^{*}). Quy tắc điền các electron vào các MO của phức chất cũng giống như quy tắc điền electron vào các AO của nguyên tử.

Để làm ví dụ cụ thể, chúng ta xét ion phức bát diện $[\mathrm{Ti}(\mathrm{H_2O})_6]^{3+}$, trong đó những obitan hóa trị của ion Ti^{3+} là $3\,\mathrm{d}_{z^2}$, $3\,\mathrm{d}_{x^2-y^2}$, $3\mathrm{d}_{xy}$, $3\mathrm{d}_{xz}$, $3\mathrm{d}_{vz}$, $4\mathrm{s}$, $4\mathrm{p}_x$, $4\mathrm{p}_v$ và $4\mathrm{p}_z$ của 6 phân tử $\mathrm{H_2O}$

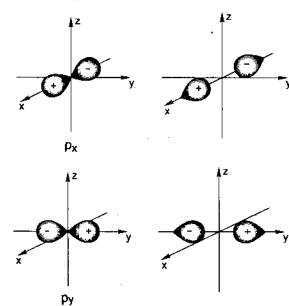
là σ_1 , σ_2 , σ_3 , σ_4 , σ_5 và σ_6 (obitan σ chính là $MO\sigma_x$ có cặp electron của H_2O theo thuyết MO hay một trong hai obitan lai hóa sp³ có cặp electron tự do của O trong H_2O theo thuyết VB).

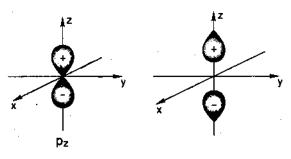
Obitan 4s của ${\rm Ti}^{3+}$ tổ hợp với 6 obitan σ của ${\rm H_2O}$ (Hình 10) tạo nên cặp ${\rm MO}_{\sigma_s}$ liên kết và phản liên kết. Hàm

sóng của MO σ_s là:

Hình 10. Những obitan nguyên tử tổ hợp nên những MO o.

$$\Psi \sigma_{s}^{1k} = c_{1} 4 s + c_{2} (\sigma_{1} + \sigma_{2} + \sigma_{3} + \sigma_{4} + \sigma_{5} + \sigma_{6})$$

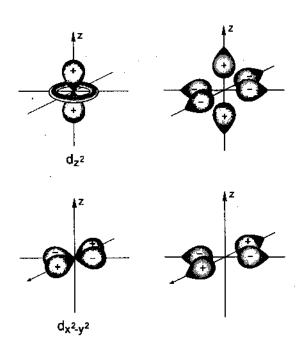

trong đó c_1 và c_2 là hệ số tổ hợp.


Ba obitan 4p của Ti^{3+} , mỗi một tổ hợp với hai obitan σ của H_2O (Hình 11), tạo nên tất cả ba cặp $MO\sigma_p$ liên kết và phản liên kết. Hàm sóng của ba $MO\sigma_p^{lk}$ là:

$$\begin{split} \Psi \sigma_{x}^{lk} &= c_{3} 4 p_{x} + c_{4} (\sigma_{1} - \sigma_{3}) \\ \Psi \sigma_{y}^{lk} &= c_{3} 4 p_{y} + c_{4} (\sigma_{2} - \sigma_{4}) \\ \Psi \sigma_{z}^{lk} &= c_{3} 4 p_{z} + c_{4} (\sigma_{5} - \sigma_{6}) \end{split}$$

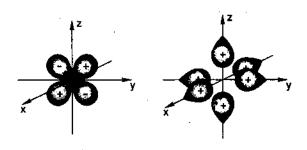
trong đó c_3 và c_4 là hệ số tổ hợp. Ba $MO\sigma_p$ liên kết có năng lượng bằng nhau và ba $MO\sigma_p$ phản liên kết có năng lượng bằng nhau.

Hai obitan d_{γ} của Ti^{3+} tổ hợp với các σ của H_2O (Hình 12) tạo nên hai cặp $MO\sigma_d$ liên kết và phản liên kết. Hàm sóng của hai $MO\sigma_d^{lk}$ là:


$$\Psi \sigma_{z^2}^{1k} = c_5 3d_{z^2} + c_6 (2\sigma_5 + 2\sigma_6 - \sigma_1 - \sigma_2 - \sigma_3 - \sigma_4)$$

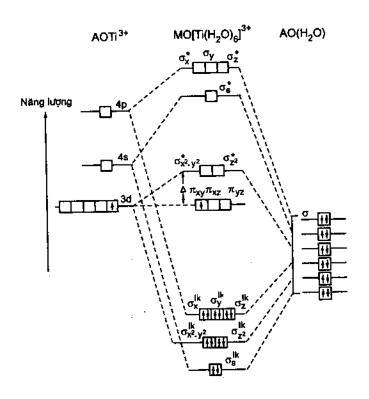
$$\Psi \sigma_{x^2 - y^2}^{1k} = c_7 3d_{x^2 - y^2} + c_8 (\sigma_1 - \sigma_2 + \sigma_3 + \sigma_4)$$

Hình 11. Những obitan nguyên tử tổ hợp nên những MO O_p


trong đó c_5 , c_6 , c_7 và c_8 là hệ số tổ hợp, $2\sigma_5$ và $2\sigma_6$ chỉ ra sự che phủ của σ_5 và σ_6 ở trên trục z

lớn gấp đôi so với sự che phủ của các σ khác ở trên các trục x và y. Hai $MO\sigma_d$ liên kết này có năng lượng bằng nhau và hai $MO\sigma_d$ phản liên kết có năng lượng bằng nhau.

Hình 12. Những obitan nguyên tử tổ hợp nên những MO Ta

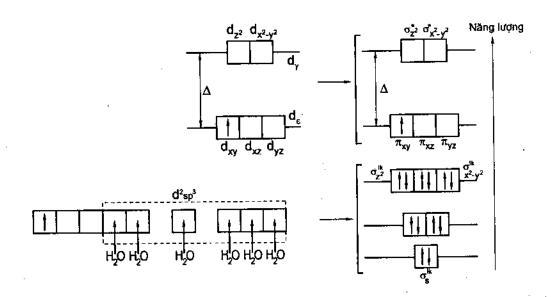

Ba obitan d_{ϵ} còn lại của Ti^{3+} , trong phức chất bát diện, có thể che phủ π với obitan thích hợp của phối tử tạo nên $MO\pi_d$ nhưng H_2O không có obitan thích hợp đó nên chúng tồn tại trong ion phức dưới dạng $MO\pi_d$ không liên kết (Hình 13, trong hình chỉ trình bày obitan nguyên tử d_{yz})

Hình 13. Những obitan d_{ε} của Ti^{3+} không tổ hợp được với obitan σ của H_2O

Sắp xếp các MO đã xét trên đây theo thứ tự năng lượng từ thấp đến cao, được giản đồ năng lượng các MO của ion phức $[Ti(H_2O)_6]^{3+}$ (Hình 14):

Hình 14. Giản đổ năng lượng các MO của ion bát diện $[Ti(H_2O)_6]^{3+}$

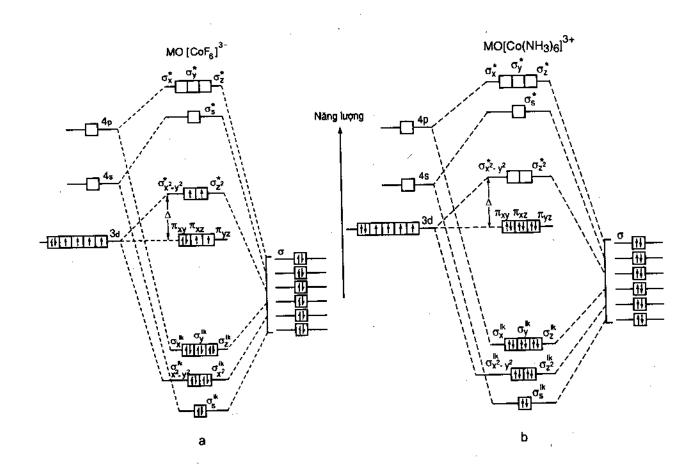
Điển 13 electron (1 của Ti^{3+} và 12 của $6\text{H}_2\text{O}$) vào các MO theo thứ tự năng lượng trên giản đổ các MO, được cấu hình electron của ion $[\text{Ti}(\text{H}_2\text{O})_6]^{3+}$


$$(\sigma_{s}^{lk})^{2}(\sigma_{z^{2}}^{lk})^{2}(\sigma_{x^{2}-y^{2}}^{lk})^{2}(\sigma_{x}^{lk})^{2}(\sigma_{y}^{lk})^{2}(\sigma_{z}^{lk})^{2}(\pi_{xy})^{1}$$

Những electron trên $MO\sigma^{lk}$ định chỗ chủ yếu ở các phân tử H_2O vì obitan hóa trị σ của H_2O bền hơn nhiều so với ion trung tâm. Mặt khác những obitan không liên kết và phản liên kết định chỗ chủ yếu ở ion trung tâm. Hiệu năng lượng của các obitan phân tử σ_d^* và π_d là Δ , giải thích quan điểm về sự tách mức năng lượng của các obitan d trong thuyết trường tinh thể. Giá trị của Δ quyết định nhiều tính chất của phức chất. Đối với những phức chất tứ diện và hình vuông, các MO được tổ hợp tương tự nhưng phức tạp hơn.

So sánh những kết quả thu được của thuyết obitan phân tử với thuyết liên kết hóa tri và thuyết trường tinh thể

Khi xét cấu tạo của ion phức bát diện $[\mathrm{Ti}(H_2O)_6]^{3+}$, nhận thấy rõ thuyết liên kết hóa trị và thuyết trường tinh thể mô tả những phần khác nhau của giản đồ năng lượng các MO (Hình 15). Sự tạo thành các MO σ liên kết phù hợp với sự tạo thành các liên kết cho-nhận giữa cặp electron tự do của H_2O với obitan lai hóa d^2sp^3 trống của Ti^{3+} . Nhưng thuyết VB không chú ý khả năng tạo thành các MO σ phản liên kết nên không thể giải thích được phổ hấp thụ của phức chất. Sự tách mức năng lượng của các obitan d thành hai mức trong thuyết trường tinh thể phù hợp với sự tạo thành các obitan π_d và σ_d^* có mức năng lượng khác nhau. Tất nhiên khác với


Hình 15. So sánh thuyết MO với thuyết VB và thuyết trường tinh thể

thuyết trường tinh thể, việc tính toán năng lượng của liên kết trong phức chất theo thuyết MO là phức tạp hơn rất nhiều, cần phải dùng đến máy tính điện tử hiện đại.

Như vậy, giản đồ năng lượng các MO của phức chất bát diện trình bày trên hình 15 biểu hiện rõ mối quan hệ của ba lí thuyết hiện đại về cấu tạo của phức chất các kim loại chuyển tiếp.

Chúng ta xét cấu hình electron của ion phức bát diện spin cao $[CoF_6]^3$ và ion phức bát diện spin thấp $[Co(NH_3)_6]^{3+}$ (Hình 16):

Hình 16. Sơ đồ sắp xếp các electron hóa trị trên những MO của ion phức hát diện $[CoF_b]^3$ (a) $và [Co(NH_3)_b]^{3+}$ (b)

nhận thấy trong số 18 electron hóa trị (6 của Co^{3+} và 12 của 6 phối tử), trong ion $[\text{CoF}_6]^{3-}$ có Δ bé (156 kJ/mol), 12 electron điền vào 6 MO σ^{1k} và 6 electron còn lại điền vào MO π_d và MO σ_d^* :

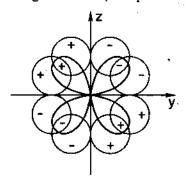
$$(\sigma_{\mathfrak{s}}^{lk})^2(\sigma_{\mathfrak{d}}^{lk})^4(\sigma_{\mathfrak{p}}^{lk})^6(\pi_{\mathfrak{d}})^4(\sigma_{\mathfrak{d}}^{\bullet})^2,$$

nghĩa là ion $[\text{CoF}_6]^{3-}$ có 4 electron độc thân, còn trong ion $[\text{Co(NH}_3)_6]^{3+}$ có Δ lớn (265 kJ/mol), 12 electron điền vào 6MO σ^{lk} và 6 electron còn lại chỉ điền vào MO π_d :

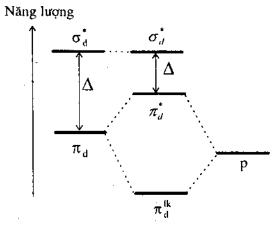
$$(\sigma_s^{lk})^2 (\sigma_d^{lk})^4 (\sigma_{.p}^{lk})^6 (\pi_d)^6,$$

nghĩa là ion [Co(NH₃)₆]³⁺ không có electron độc thân.

Sự sắp xếp khác nhau các electron trên các obitan phân tử π_d và σ_d^{\bullet} phụ thuộc vào Δ và năng lượng ghép đôi P của electron giống như đã trình bày trong thuyết trường tinh thể.

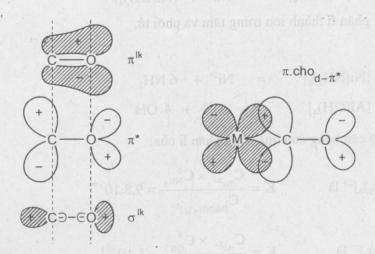


Sự sai khác về giá trị của Δ trong hai ion phức bát diện này của Co(III), theo thyết MO, là sự khác nhau về mức độ che phủ giữa obitan nguyên tử hóa trị của Co³⁺ với obitan hoá trị σ của F⁻ và của NH₃. Các obitan hóa trị che phủ nhau càng nhiều, năng lượng của MO liên kết và MO phản liên kết càng khác nhau, do đó Δ càng lớn và liện kết – kim loại phối tử càng bền. Ngoài ra Δ còn chịu ảnh hưởng lớn của sự tạo thành liên kết π giữa kim loại và phối tử.

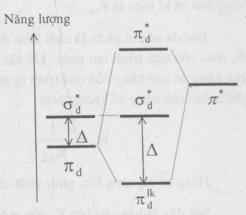

Liên kết π trong phức chất

Trong phức chất bát diện, những obitan d_{xy} , d_{xz} và d_{yz} có thể dùng để tạo thành liên kết π . Khi phối tử có obitan có thể che phú π với những obitan d_{ϵ} đó, giản đồ năng lượng các MO của phân tử trở nên phức tạp hơn nhiều: ngoài các MO σ liên kết và phản liên kết còn có các MO π liên kết và phản liên kết nữa và hiệu năng lượng Δ cũng biến đổi. Những obitan của phối tử có khả năng đó là: obitan p vuông góc với trục liên kết σ , obitan d và obitan π^* , tất cả những obitan này đều nằm trong cùng mặt phẳng với obitan của nguyên tử trung tâm .

Hình 17 trình bày sự che phủ của obitan d_{ϵ} , ví dụ d_{zy} , với obitan p có cặp electron của bốn phối tử nằm trong mặt phẳng yz, ví dụ trong ion phức bát diện $[CoF_6]^3$ chẳng hạn, liên kết π kiểu này được gọi là *liên kết* π cho-nhận. Trong trường hợp này, obitan 2p của F^- có năng lượng thấp hơn 3d


Hình 17. Sự che phủ giữa d₂₉ của Co³⁺ với obitan p của 4 ion F

Hình 18. Giản đồ năng lượng các MO_{Ta} của [CoF_o]³⁻


của Co^{3+} nên obitan π_d^{1k} định chỗ chủ yếu ở F^- và obitan π_d^* định chỗ chủ yếu ở Co^{3+} . Giản đồ năng lượng các $MO\pi_d$ được trình bày trên hình 18 (vạch ngang chỉ mức năng lượng của obitan). Giản đồ cho thấy hiệu năng lượng Δ giảm xuống so với đại lượng Δ đặc trưng cho phức chất chỉ có liên kết σ . Điều này giải thích vị trí của ion F^- (và các halogenua khác) đứng đầu trong dãy phổ hóa học.

Hình 19 trình bày sự che phủ của obitan d_{ϵ} có cặp electron của nguyên tử trung tâm với obitan π^* trống của phối tử CO (hay CN) và hình dạng của MO σ^{lk} (tạo liên kết σ cho-nhận với nguyên tử trung tâm), MO σ^{lk} liên kết và MO π^* của CO (gạch xiên trên hình chỉ obitan có cặp electron). Liên kết kiểu π này được gọi là *liên kết \pi-cho*. Trong trường hợp này, obitan π^* trống của CO (hay CN) có năng lượng cao hơn obitan d của kim loại nên MO π^*_d có năng

Hình 19. Hình dạng các MO của phân tử CO và sự che phủ giữa obitan của CO với obitan d của kim loại

lượng cao hơn các $MO\sigma_d^*$. Giản đồ năng lượng các $MO\pi$ được trình bày trên hình 20 (vạch ngang chỉ mức năng lượng của obitan). Giản đồ cho thấy sự tạo thành liên kết π làm tăng hiệu năng lượng Δ so với đại lượng Δ đặc trưng cho phức chất chỉ có liên kết σ . Khi tạo thành liên kết π -cho một phần mật độ electron chuyển dịch từ nguyên tử trung tâm đến phối tử làm bền thêm liên kết kim loại phối tử. Đến đây chúng ta hiểu được vị trí của các phối tử CO và CN^- đứng cuối trong dãy phổ hóa học.

Hình 20. Giản đồ năng lượng các MO π_d của phức chất với phối tử CO

SU PHÂN LI CỦA PHÚC CHẤT TRONG DUNG DỊCH

Hằng số bền và hằng số không bên

Trong dung dịch, phức chất thường xuyên phân li thành cầu nội và cầu ngoại tương tự như hợp chất đơn giản phân li thành cation và anion.

Ví du:

$$[Ni(NH_3)_6]Cl_2 = [Ni(NH_3)_6]^{2+} + 2Cl^{-}$$

 $Na[Al(OH)_4] = Na^+ + [Al(OH)_4]^-$

rồi ion phức lại phân li thành ion trung tâm và phối tử.

Ví du:

$$[Ni(NH_3)_6]^{2+}$$
 = Ni^{2+} + $6NH_3$
 $[Al(OH)_4]^-$ = Al^{3+} + $4OH^-$

Hằng số cân bằng của quá trình phân li của:

$$[Ni(NH_3)_6]^{2+} l\grave{a} \qquad K = \frac{C_{Ni^{2+}} \times C_{NH_3}^6}{C_{[Ni(NH_3)_6]^{2+}}} = 9.8.10^{-9}$$

$$[Al(OH)_4]^{-} l\grave{a} \qquad K = \frac{C_{Al^{3+}} \times C_{OH^{-}}^4}{C_{[Al(OH)_4]^{-}}} = 1.10^{-33}$$

Hằng số cân bằng K càng lớn khi ion phức phân li càng mạnh, nghĩa là ion phức càng kém bên. Bởi vậy hằng số K chỉ độ bền của ion phức trong dung dịch, được gọi là hằng số không bền và kí hiệu là K_{kb}.

Đại đa số ion phức là chất kém điện lị, quá trình phân lị chuyển dịch mạnh về phía bên trái, phía của quá trình tạo phức. Để chỉ khả năng tạo phức của nguyên tử trung tâm, người ta dùng hằng số cân bằng của quá trình ngược lại đó. Hằng số đó được gọi là hằng số bền K_b và là nghịch đảo của hằng số không bền:

$$K_b = \frac{1}{K_{kb}}$$

Hàng số K, càng lớn, phức chất càng bền.

Sau đây là hằng số bền K, của một số ion phức (Bảng 4)

Bảng 4 Hằng số bền của ion phức

K _b	Ion phức	\mathbf{K}_{b}
(2)	(3)	(4)
	Etylendiamin	
1,0.108	Co(en) ₃ ²⁺	8.10^{13}
3,63.10 ⁶	Co(en) ₃ ³⁺	4,9.1048
2,45.104		$1,35.10^{20}$
	1,0.10 ⁸ 3,63.10 ⁶	(2) (3) Etylendiamin 1,0.10 ⁸ Co(en) ₃ ²⁺ 3,63.10 ⁶ Co(en) ₃ ³⁺

(1)	(2)	(3)	(4)
Co(NH ₃) ₆ ³⁺	$1,99.10^{35}$	Ni(en) ₂ ²⁺	1,29.1019
Cu(NH ₃) ₄ ²⁺	$1,07.10^{12}$	Florua	
$Hg(NH_3)_4^{2+}$	1,99.1019	AlF ₆ ³⁻	4,68.10 ²⁰
$Ni(NH_3)_4^{2+}$	1,02.108	FeF ₆ ³⁻	1,26.1016
$Zn(NH_3)_4^{2+}$	$5,01.10^8$	Hiđroxi	
Вготиа.		Al(OH) ₄	1,00.10 ³³
$AgBr_2^-$	$2,19.10^7$	Cd(OH) ₄ ²⁻	2,63.10 ⁸
AuBr ₂	2,88.1012	Cr(OH) ₄	7,94.10 ²⁹
CdBr ₄ ²⁻	$5,01.10^3$	Cu(OH) ₄ ²⁻	3,63.1014
HgBr ₄ ²⁻	1,0.10 ²¹	Fe(OH) ₄ ²⁻	3,63.10 ⁸
		Zn(OH) ₄ ²⁻	5,02.1017
Clorua		Iođua	
AgCl ₂	1,1.105	AgI ₂	5,5.1011
AuCl ₂	2,63.10°	HgI ₄ ²⁻	6,67.10 ²⁹
AuCl ₄	$2.0.10^{21}$	PbI ₄ ²⁻	8,32.10 ³
CuCl ₂	2,24.105	Tiosunfat	
HgCl ₄ ²⁻	1,66.10 ¹⁵	$Ag(S_2O_3)_2^{3-}$	2,8.1013
Xianua		$Cu(S_2O_3)_2^{3-}$,	1,86.1012
$Ag(CN)_2^-$	7,08.1019	Trilon B	
Au(CN) ₂	2,0.1038	Al(EĐTA)	1,4.1016
Cd(CN) ₄ ²⁻	1,29.1017	Co(EĐȚA)2-	2,0.10 ⁶
Co(CN) ₆ ⁴⁻	1,23.1019	Cu(EĐTA)2-	6,3.1018
Cu(CN) ₂	1,00.1024	Fe(EĐTA) ²⁻	2,1.1014
Fe(CN) ₆ ⁴⁻	7,94.10 ³⁶	Fe(EĐTA)	1,3.10 ²⁵
Fe(CN) ₆ ³⁻	7,94.10 ⁴³	Hg(EĐTA)2-	6,3.1021
Hg(CN) ₄ ²⁻	9,33.1038	Ni(EĐTA)2-	4,2.1018
Ni(CN) ₄	1,0.1031	Zn(EĐTA) ²⁻	3,2.1016

Qua bảng nhận thấy trong dung dịch:

 $[Zn(OH)_4]^2$ hơi bền hơn $[Cu(OH)_4]^2$

 $[Ag(CN)_2]$ rất bền hơn $[Ag(NH_3)_2]^+$

[Fe(CN)₆]³ rất bền hơn [Fe(CN)₆]⁴

 $[Ni(en)_3]^{2+}$ rất bền hơn $[Ni(NH_3)_6]^{2+}$

Hằng số bền tổng và hằng số bền từng nấc

Quá trình tạo thành và quá trình phân li của ion phức xảy ra theo từng nấc, ứng với mỗi nắc có một hằng số bền và hằng số không bền riêng của ion phức $[Ni(NH_3)_6]^{2+}$ là:

$$Ni^{2+} + NH_{3} \Longrightarrow [Ni(NH_{3})]^{2+}, \qquad K_{b1} = \frac{C_{[Ni(NH_{3})]^{2+}}}{C_{Ni^{2+}} \times C_{NH_{3}}} = 4,68.10^{2}$$

$$[Ni(NH_{3})]^{2+} + NH_{3} \Longrightarrow [Ni(NH_{3})_{2}]^{2+}, \qquad K_{b2} = \frac{C_{[Ni(NH_{3})]^{2+}}}{C_{[Ni(NH_{3})_{3}]^{2+}} \times C_{NH_{3}}} = 1,32.10^{2}$$

$$[Ni(NH_{3})_{2}]^{2+} + NH_{3} \Longrightarrow [Ni(NH_{3})_{3}]^{2+}, \qquad K_{b3} = \frac{C_{[Ni(NH_{3})_{3}]^{2+}}}{C_{[Ni(NH_{3})_{3}]^{2+}} \times C_{NH_{3}}} = 4,07.10^{1}$$

$$[Ni(NH_{3})_{3}]^{2+} + NH_{3} \Longrightarrow [Ni(NH_{3})_{4}]^{2+}, \qquad K_{b4} = \frac{C_{[Ni(NH_{3})_{4}]^{2+}}}{C_{[Ni(NH_{3})_{5}]^{2+}} \times C_{NH_{3}}} = 1,18.10^{1}$$

$$[Ni(NH_{3})_{4}]^{2+} + NH_{3} \Longrightarrow [Ni(NH_{3})_{5}]^{2+}, \qquad K_{b5} = \frac{C_{[Ni(NH_{3})_{5}]^{2+}}}{C_{[Ni(NH_{3})_{4}]^{2+}} \times C_{NH_{3}}} = 4,26$$

$$[Ni(NH_{3})_{5}]^{2+} + NH_{3} \Longrightarrow [Ni(NH_{3})_{6}]^{2+}, \qquad K_{b6} = \frac{C_{[Ni(NH_{3})_{5}]^{2+}}}{C_{[Ni(NH_{3})_{5}]^{2+}} \times C_{NH_{3}}} = 0,81$$

Hàng số bền của ion phức giảm dần theo số nấc. Dễ dàng chứng minh rằng quá trình tạo phức:

$$\begin{aligned} Ni^{2+} &+ 6NH_3 & \rightleftarrows [Ni(NH_3)_6]^{2+} \\ \text{có hàng số bền tổng:} & K_b &= \frac{C_{[Ni(NH_3)_6]^{2+}}}{C_{Ni^{2+}} \times C_{NH_3}^6} \end{aligned}$$

là tích của 6 hằng số bến từng nắc của các ion phức:

$$K_{bt} = K_{b1}$$
. K_{b2} . K_{b3} . K_{b4} . K_{b5} . $K_{b6} = 1,02.10^8$,

trong đó K_{bi} là hàng số bền tổng.

Những hàng số bền ghi trong bảng 4 là hằng số bền tổng K_{bi} của ion phức nhưng người ta thường hay gọi gọn là hằng số bền K_{b} .

400

Cũng như bất cứ hằng số cân bằng nào, hằng số bền của phức chất liên quan với biến thiên năng lượng Gip của quá trình tạo phức trong dung dịch:

$$\Delta G^0 = -2{,}303 \text{ RTlgK}$$

Biến thiên entanpi được quyết định bởi năng lượng của liên kết giữa nguyên tử trung tâm và phối tử. Nếu liên kết đó gần với liên kết ion thuần túy thì năng lượng liên kết tăng lên theo sự tăng điện tích và sự giảm bán kính của ion. Ví dụ như ion Al^{3+} tạo phức chất với F^- bền hơn với Cl^- . Nếu liên kết đó chủ yếu là liên kết cộng hóa trị thì liên kết sẽ bền trong phức chất với phối tử có $MO\pi^+$ trống như CO, CN^- .

Entropi của hệ thường tăng lên mạnh khi tạo phức. Nguyên nhân chính là sự tăng độ hỗn loạn của hệ vì khi tạo phức trong dung dịch, vỏ sonvat hóa của ion trung tâm và của phối tử đều bị phá hủy và nhiều phân tử dung môi được giải phóng. Thật vậy, phản ứng tạo phức trong dung dịch nước là phản ứng thay thế $\rm H_2O$ hidrat hóa bằng phối tử khác. Ví dụ như trong phản ứng:

$$[M(H_2O)_6]^{n+} + 6X^- = [MX_6]^{n-6} + 6H_2O$$

(trong đó X^- là phối từ anion), vỏ hiđrat hóa không chỉ của ion trung tâm M^{n+} mà cả của phối tử X^- đều bị phá hủy nên giải phóng nhiều phân tử H_2O làm tăng độ hỗn loạn của hệ.

Entropi của hệ cũng tăng mạnh khi thay thế phối tử một càng bằng phối tử nhiều càng, nghĩa là khi tạo thành phức chất vòng càng.

Ví du:

$$[Cu(NH_3)_4]^{2+}$$
 + 2en = $[Cu(en)_2]^{2+}$ + 4NH₃

Ở đây hai phân tử en đẩy ra bốn phân tử NH3 làm cho hệ tăng mạnh entropi. Bởi vậy, phức chất vòng càng luôn luôn bền hơn phức chất chứa phối tử một càng.

Ví du:

$$\begin{split} &[Cu(en)_2]^{2+} & \text{rất bển hơn} & [Cu(NH_3)_4]^{2+} \\ &(K_b = 1,35.10^{20}) & (K_b = 1,07.10^{12}) \\ &[Ni(en)_3]^{2+} & \text{rất bển hơn} & [Ni(NH_3)_6]^{2+} \\ &(K_b = 1,29.10^{19}) & (K_b = 1,02.10^8) \end{split}$$

Hiệu ứng vòng càng

Sự tăng độ bền của phức chất vòng càng so với phức chất với phối tử một càng được gọi là hiệu ứng vòng càng.

Hiệu ứng vòng càng gây nên không phải do yếu tố entanpi mà do yếu tố entropi của phản ứng tạo phức.

Ví dụ phản ứng:

$$[Ni(NH_3)_6]^{2+}$$
 + 3en = $[Ni(en)_3]^{2+}$ + 6NH₃ có ΔH° = -25 kJ/mol và ΔS_{298}^0 = 110 J/mol.độ.

Thật vậy, NH_3 và en đều phối trí với Ni^{2+} qua nguyên tử N và cả hai phối tử có lực trường gần giống nhau (trong dãy phổ hóa học) nên ΔH^0 của quá trình tạo nên ion $[Ni(en)_3]^{2+}$ và ion $[Ni(NH_3)_4]^{2+}$ không khác nhau nhiều (chỉ 25 kJ/mol). Rõ ràng là yếu tố entropi đóng góp chủ yếu vào độ bên của phức chất vòng càng.

Etylendiamin là phối tử tạo nên vòng 5 cạnh với ion trung tâm còn axetylaxeton tạo nên vòng 6 cạnh:

Trong phức chất, vòng 5 cạnh là bền nhất rồi đến vòng 6 cạnh, các vòng khác kém bền hơn.

Phối tử nhiều càng có khả năng tạo nên nhiều vòng năm cạnh với cation kim loại là EĐTA, mỗi anion liên kết với một cation kim loại qua 2 nguyên tử N và 4 nguyên tử O tạo nên ion phức M(EĐTA)⁽⁴⁻ⁿ⁾ có 5 vòng 5 cạnh:

Nhờ vây, EĐTA tao phức chất rất bền với nhiều cation kim loại kể cả kim loại kiềm thổ. Trong hóa học phân tích, người ta dùng trilon B (muối đinatri của EĐTA) để định lương các cation kim loại. Chất chỉ thi cho quá trình chuẩn đô là những hợp chất tao nên với cation kim loại những phức chất màu kém bển hơn so với phức chất của EĐTA với kim loai. Trong y học, người ta dùng muối natri-canxi của EĐTA để loại những ion kim loại nặng như Hg2+, Pb2+ và Cd2+ ra khỏi cơ thể khi bị ngộ độc bởi những kim loại đó. Điều đáng chú ý là một số muối khó tan, ví dụ như BaSO4 có thể tan trong dung dịch trilon B. Tương tự như vậy, cáu cặn trong nổi hơi có thể tan trong dung dịch trilon B.

Độ bền của phức chất và độ tan của kết tủa

Sự tạo phức có ảnh hưởng đến độ tan của các muối ít tan. Để làm ví dụ chúng ta xét sự hòa tan các kết tủa bạc halogenua trong dụng dịch NH₃.

Đối với AgCl, có các cân bằng:

$$AgCl(r) \iff Ag^{+}(dd) + Cl^{-}(dd), \qquad TT_{AgCl} = 1.8.10^{-10}$$

 $Ag^{+}(dd) + 2NH_{3}(dd) \iff [Ag(NH_{3})_{2}]^{+}, \qquad K_{b} = 1.10^{8}$

Cộng hai phương trình ta có:

$$AgCl(r) + 2NH_3(dd) \rightleftharpoons [Ag(NH_3)_2]^+(dd) + Cl^-(dd)$$

Hằng số cân bằng của phản ứng này là:

$$K = \frac{C_{[Ag(NH_3)]^+} \times C_{Cl^-}}{C_{NH_3}^2} = \frac{C_{Ag^+} \times C_{Cl^-} \times C_{[Ag(NH_3)_2]^+}}{C_{Ag^+} \times C_{NH_3}^2} = TT_{AgCl} \times K_b$$

$$K = 1.8.10^{-10} \times 1.10^{8} = 1.8.10^{-2}$$

Nếu hòa tan AgCl trong dung dịch NH₃ 1M và gọi độ tan của kết tủa đó dưới dạng ion phức là x (tính bằng mol/l), ta có:

$$AgCl(r) + 2NH_{3}(dd) \iff [Ag(NH_{3})_{2}]^{+}(dd) + Cl^{-}(dd)$$
Nổng độ ban đầu, mol/l
$$1 \qquad 0 \qquad 0$$
Nồng độ cân bằng, mol/l
$$1-2x \qquad x \qquad x$$

$$K = \frac{C_{[Ag(NH_{3})_{2}]^{+}} \times C_{Cl^{-}}}{C_{NH_{3}}^{2}} = \frac{x^{2}}{(1-2x)^{2}} = 1,8.10^{-2}$$

$$\frac{x}{1-2x} = 0,13$$

$$x = 0,10$$

$$C_{[Ag(NH_{3})_{3}]^{+}} = 0,10M$$

Như vậy, nồng độ của ion phức $[Ag(NH_3)_2]^+$ cân bằng với kết tủa AgCl là khá lớn, nghĩa là AgCl tan đáng kể trong dung dịch NH_3 so với độ tan của nó trong nước là: $\sqrt{1,8.10^{-10}} = 1,3.10^{-5}\,\mathrm{M}$.

Tính toán tương tự đối với AgI ($TT_{AgI} = 8,3.10^{-17}$), tìm được độ tan của AgI trong dung dịch NH_3 1M là $9.10^{-5}M$, nghĩa là AgI không tan trong dung dịch NH_3 . Ngược lại nếu thêm muối iođua (Γ) vào dung dịch $[Ag(NH_3)_2]^+$, kết tủa AgI xuất hiện.

Rỗ ràng là hằng số cân bằng của phản ứng giữa kết tủa và phối tử tạo phức phụ thuộc vào quan hệ giữa tích số tan của chất ít tan và hằng số bền của phức chất. Một chất rất ít tan chỉ có thể tan khi tạo thành những phức chất rất bền. Kết tủa AgI không tan trong dung dịch NH_3 nhưng tan trong dung dịch $Na_2S_2O_3$ và tan rất dễ trong dung dịch NaCN nhờ tạo nên các ion phức $[Ag(S_2O_3)_2]^{3-}$ và $[Ag(CN)_2]^{-}$ bền hơn $[Ag(NH_3)_2]^{+}$ (xem bảng 4).

TÍNH CHẤT OXI HÓA-KHỬ CỦA PHỰC CHẤT

Sự tạo phức có ảnh hưởng quan trọng đến thế điện cực của kim loại chuyển tiếp.Trước hết, chúng ta xét nửa phản ứng:

$$Fe^{3+} + e = Fe^{2+}$$
 với $E^{\circ} = 0.77V$

Giả sử thêm vào hệ một phối tử có khả năng tạo phức chất bền với cả dạng oxi hóa và dạng khử của phản ứng, ví dụ CN chẳng hạn. Chúng ta có nửa phản ứng khác:

$$[Fe(CN)_6]^{3-} + e = [Fe(CN)_6]^{4-}$$

trong đó hai phức chất ở trạng thái cân bằng với ion trung tâm và phối tử:

$$[Fe(CN)_6]^{3-} \rightleftharpoons Fe^{3+} + 6CN^-$$
, $K_{kb}^{Fe^{3+}} = \frac{C_{Fe^{3+}} \times C_{CN^-}^6}{C_{[Fe(CN)_6]^{3-}}} = 1,25.10^{-44}$.

$$[Fe(CN)_6]^4 \iff Fe^{2+} + 6CN^-$$
, $K_{kb}^{Fe^{2+}} = \frac{C_{Fe^{2+}} \times C_{CN^-}^6}{C_{[Fe(CN)_6]^4}} = 1,25.10^{-37}$

Theo phương trình Necsto, thế chuẩn của cặp $Fe(CN)_6^{3-}$ / $Fe(CN)_6^{4-}$ là:

$$E^{o}_{\{Fe(CN)_{6}\}^{3^{+}}/[Fe(CN)_{6}\}^{4^{-}}} = E^{o}_{Fe^{3^{+}}/Fe^{2^{+}}} + 0,059 \lg \frac{C_{Fe^{3^{+}}}}{C_{Fe^{2^{+}}}}$$

Tỉ số $C_{Fe^{3+}/Fe^{2+}}$ có thể tính được bằng tỉ số các hằng số không bền của phức chất tương ứng:

$$\frac{C_{Fe^{3+}}}{C_{Fe^{2+}}} = \frac{K_{kb}^{Fe^{3+}}}{K_{kb}^{Fe^{2+}}}$$

vì ở điều kiện chuẩn, $C_{[Fe(CN)_6]^{3-}} = C_{[Fe(CN)_6]^{4-}} = 1\text{mol}/1$

Vậy:

$$E_{\text{[Fe(CN)}_{6}]^{3-}/\text{[Fe(CN)}_{6}]^{4-}}^{\circ} = 0,77 + 0,059 \lg \frac{1,25.10^{-44}}{1,25.10^{-37}}$$

$$E^{\circ} = 0,36 \text{ V}$$

Như vậy thế chuẩn của nửa phản ứng này đã giảm xuống từ 0,77V đến 0,36V là vì ion phức $[Fe(CN)_6]^3$ bên hơn ion phức $[Fe(CN)_6]^{4-}$.

Nhưng nếu không thêm phối tử CN^- mà thêm orthophenantrolin (viết tắt là phen) cũng là phối tử có khả năng tạo phức với cả hai ion Fe^{3+} và Fe^{2+} , nửa phản ứng:

$$Fe(phen)_3^{3+} + e = Fe(phen)_3^{2+}$$
 có $E^0 = 1,12V$

Như vậy, thế chuẩn của nửa phản ứng này tăng lên từ 0,77V đến 1,12V. Điều đó chứng tỏ ion phức $[Fe(phen)_3]^{3+}$ kém bền hơn ion phức $[Fe(phen)_3]^{2+}$.

Vậy sự tăng hay giảm thế của cặp oxi hóa-khử phụ thuộc vào bản chất của phối tử.

Bây giờ chúng ta xét nửa phản ứng:

$$Ag^+ + e = Ag \quad v\acute{\sigma}i \quad E^\circ = 0.80V$$

Giả sử thêm vào hệ một phối tử có khả năng tạo phức với ion Ag^+ như $S_2\,O_3^{2-}$ chẳng hạn. Ion đó tạo với ion Ag^+ ion phức bền $[Ag(S_2O_3)\]^{3-}$:

$$Ag^{+} + 2S_{2}O_{3}^{2-} \iff [Ag(S_{2}O_{3})_{2}]^{3-} \text{ v\'oi} \qquad K_{b} = \frac{C_{[Ag(S_{2}O_{3})_{2}]^{3-}}}{C_{Ag^{+}} \times C_{S_{2}O_{3}^{2-}}^{2}} = 2,88.10^{13}$$

Chúng ta tính thể chuẩn của nửa phản ứng:

$$[Ag(S_2O_3)_2]^{3-}$$
 + e = $Ag + 2S_2O_3^{2-}$

Theo phương trình Necsto, thế chuẩn của điện cực $[Ag(S_2O_3)_2]^{3-}/Ag$ là:

$$E^{\circ}_{(Ag(S_2O_3)_2)^{3^{\circ}}/Ag} = E^{\circ}_{Ag^+/Ag} + 0.059 C_{Ag^{\bullet}}$$

Ò đây:

$$C_{Ag^+} = \frac{1}{K_b} = \frac{1}{2,88.10^{13}} = 3,47.10^{-14}$$

vì ở điều kiện chuẩn, $C_{[Ag(S_2O_3)_2]^{3-}} = C_{S_2O_3^{2-}} = 1 \text{mol} / 1$

Nên:
$$E^{\circ}_{[Ag(S_2O_3)_2]^{3-}/Ag} = 0.80 + 0.059 \text{ lg } (3.47.10^{-14})$$

 $E^{\circ} = 5.89.10^{-3} \text{ V}$

Vậy sự tạo thành phức chất càng bền càng làm giảm thế điện cực chuẩn của kim loại như sẽ thấy qua những ví du dưới đây:

$$Zn(NH_3)_4^{2+}$$
 + 2e = Zn + 4NH₃ , E° = -1,04V
 $Zn(CN)_4^{2-}$ + 2e = Zn + 4CN⁻ , E° = -1,26V
 $Ag(NH_3)_2^+$ + e = Ag + 2NH₃ , E° = 0,37V
 $Ag(CN)_2^-$ + e = Ag + 2CN⁻ , E° = -0,29V

Đến đây ta hiểu được kim loại Ag không tan trong các axit thông thường giải phóng H_2 nhưng có khả năng tan trong dung dịch HCN nhờ phản ứng tạo phức.

TÍNH CHẤT AXIT-BAZO CỦA PHỰC CHẤT

Tính chất axit-bazơ của phức chất thường thể hiện ở phản ứng của phối tử bao quanh ion trung tâm. Khi tạo nên liên kết cho-nhận, một phần mật độ electron của phối tử chuyển dịch về phía ion trung tâm cho nên trong nội bộ của phối tử nhiều nguyên tử có sự phân bố lại mật độ electron. Nếu trong phối tử nhiều nguyên tử có nguyên tử H thì H sẽ có trội điện tích dương và trở nên axit hơn. Bởi vậy, H₂O ở trong cầu nội phức chất, so với H₂O bình thường trong dụng dịch, thể hiện tính axit càng mạnh hơn khi tác dụng cực hóa của ion trung tâm càng mạnh, tức là ion có điện tích càng lớn và bán kính càng bé.

Bảng 5 dưới đây ghi hằng số phân li axit $K_{\rm A}$ của một số ion phức

Bảng 5 Hằng số phân li axit của ion phức

Ion phức	K _A	Ion phức	K _A
[Ca(H ₂ O) ₆] ²⁺	2,5.10-13	[Al(H ₂ O) ₆] ³⁺	1,3.10 ⁻⁵
$[Mg(H_2O)_6]^{2+}$	4.10 12	$[Co(NH_3)_2(H_2O)_4]^{3+}$	4.10-4
[Pt(NH ₃) ₆] ⁴⁺	1,2.10-8	$[Cr(H_2O)_6]^{3+}$	1,2.10-4
[Co(NH ₃) ₅ H ₂ O] ³⁺	2,04.10-6	[Pt(NH ₃) ₅ H ₂ O] ⁴⁺	~10-4
$[Co(NH_3)_3(H_2O)_3]^{3+}$	4.10-5	[Fe(H ₂ O) ₆] ³⁺	6,3.10 ⁻³

Qua bảng ta thấy H_2O trong aquacation $Al(H_2O)_6^{3+}$ là axit có độ mạnh tương đương CH_3COOH ($K_A = 1,8.10^{-5}$) và trong các aquacation $Cr(H_2O)_6^{3+}$ và $Fe(H_2O)_6^{3+}$ còn mạnh hơn, còn các cation Co^{3+} và Pt^{4+} biến H_2O trong câu nội thành axit tương đối mạnh, tương đương axit nitro ($K_A = 4,5.10^{-4}$).

Như vậy, trong dung dịch nước của những phức chất aqua có cân bằng:

$$\begin{split} [M(H_2O)_6]^{n+} &+ H_2O \iff [M(H_2O)_5OH]^{(n-1)+} + H_3O^+ \\ [M(H_2O)_5OH]^{(n-1)+} &+ H_2O \iff [M(H_2O)_4(OH)_2]^{(n-2)+} + H_3O^+ \text{ và v.v...} \end{split}$$

Những cân bằng phân li của phức chất trình bày theo quan điểm hóa học phối trí thực ra là cân bằng của phản ứng thủy phân rất quen thuộc với chúng ta.

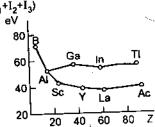
Đối với phức chất của platin, những phối tử nhiều nguyên tử có chứa H như NH_3 , CH_3NH_2 , en... cũng có thể phân li axit. Ví dụ như $[Pt(NH_3)_6]^{4+}$ là axit rất yếu (xem bảng 5). Thật vậy, khi tác dụng với dụng dịch kiềm:

$$[Pt(NH_3)_6]^{4+} + OH^- \iff [Pt(NH_3)_5NH_2]^{3+} + H_2O$$

amoniacat của Pt(IV) tạo nên hợp chất amido.

CÁC NGUYÊN TỐ NHÓM IIIB

CHƯƠNG II


Nhóm IIIB gồm có các nguyên tố: scanđi (Sc), ytri (Y), lantan (La) và actini (Ac). Dưới đây là một số đặc điểm của nguyên tố (Bảng 6).

Bảng 6 Một số đặc điểm của các nguyên tố Sc, Y, La và Ac

Nguyên tố (E)	Số thứ tự nguyên	Cấu hình electron	Năng lượng ion hóa, eV				Bán kính nguyên	Bán kính ion	Thế điện cực	
	tử		I	I_2	I_3	I ₄	tử, Å	E ³⁺ ,Å	chuẩn, V	
Sc	21	[Ar]3d ¹ 4s ²	6,56	12,8	24,8	73,6	1,64	0,83	-2,08	
Y	39	[Kr]4d ¹ 5s ²	6,21	12,30	20,46	61,5	1,81	0,94	-2,37	
La	57	[Xe] 5d ¹ 6s ²	5,77	11,38	19,10	52,5	1,87	1,06	-2,52	
Ac	89	[Rn]6d ¹ 7s ²	5,1	-	-	<u> </u>	2,03	1,11	-2,26	

Các nguyên tố nhóm IIIB có cấu hình electron chung của nguyên tử là $(n-1)d^1ns^2$ và là nguyên tố đứng đầu các dãy kim loại chuyển tiếp. Việc chỉ có một electron d làm cho cấu hình d^1s^2 đó kém bên và biểu lộ trong mọi tính chất của nhóm nguyên tố. Khác với các nguyên tố d khác, nguyên tố nhóm IIIB này có một trạng thái oxi hóa không biến đổi là +3 và không thể hiện mạnh khả năng tạo phức với nhiều phối tử. $(l_1+l_2+l_3)$

So sánh với nguyên tố nhóm IIIA (xem tập hai) nhận thấy một số đặc điểm như bán kính nguyên tử, bán kính của ion E³+, tổng năng lượng ion hóa thứ nhất, thứ hai và thứ ba, thế điện cực chuẩn của kim loại đều biến đổi khá đều đặn trong dãy B-Al-Sc-Y-La-Ac và trái ngược lại ở trong dãy B-Al-Ga-In-Tl (Hình 2). Điều này có liên quan đến kiến trúc electron của

Hình 21. Sự biến đối của tổng năng lượng ion hóa các nguyên tố nhóm III

ion E³⁺. Các ion Sc³⁺, Y³⁺, La³⁺ và Ac³⁺ có cấu hình electron của khí hiếm giống như ion Al³⁺ trong khi các ion Ga³⁺, In³⁺ và Tl³⁺ có vỏ ngoài cũng gồm 18 electron.

Thật vậy, tính kim loại của các đơn chất tăng lên đều đặn trong dãy B-Al-Sc-Y-La-Ac; Sc gần với Al hơn, còn các nguyên tố còn lại gần với kim loại kiềm thổ.

CÁC ĐƠN CHẤT

Tính chất lí hóa học

Scandi, ytri, lantan và actini là những kim loại màu trắng bạc, tương đối khó nóng chảy và khá giòn. Dưới đây là một số hằng số vật lí của các kim loại (Bảng 7).

Bảng 7 Hằng số vật lí quan trọng của các kim loại

Kim loại (E)	Nđnc, °C	Nds, °C	Ti khối	Độ dẫn điện (Hg=1)
Sc	1539	2700	3,02	1,36
Y	1526	3340	4,47	1,73
La	920	3470	6,16	1,54
Ac	1050	3300	10,1	-

Tất cả đều dẫn điện và nhiệt tương đối kém. Scanđi và ytri thuộc kim loại nhẹ còn lantan và actini thuộc kim loại nặng. Lantan tạo hợp kim với nhiều kim loại, trong đó thường tạo nên những hợp chất giữa-kim loại. Hợp kim chứa hợp chất giữa-kim loại của La với kim loại chuyển tiếp, ví dụ như LaNi, có đặc tính là có thể hấp thụ ở điều kiện thường một lượng khí H₂ gần gấp đôi lượng H₂ có trong cùng một thể tích của hiđro lỏng hay hiđro rắn. Có lẽ những nguyên tử H đã chui vào lỗ trống của kiến trúc tinh thể của hợp chất giữa-kim loại tạo nên một vật liệu có kiến trúc rất sít sao. Khi được đun nóng nhẹ, hợp kim lại giải phóng H₂. Bởi vậy, hợp kim chứa LaNi, được dùng làm bình tích trữ khí hiđro dùng cho pin nhiên liệu hiđro oxi. Actini là nguyên tố phóng xạ, đồng vị bền ²²⁷Ac có chu kì bán rã là 21,77 năm.

Nói chung về tính chất vật lí, Sc và Y gần với kim loại đất hiếm nhóm nặng còn La và Ac gần với kim loại đất hiếm nhóm nhẹ.

Tất cả nhóm IIIB đều là kim loại rất hoạt động về mặt hóa học, trong nhiều hợp chất chúng giống với Mg và Ca. Hoạt tính hóa học tăng lên từ Sc đến Ac.

Khi để trong không khí, Sc và Y không biến đổi vì có màng oxit bảo vệ, còn La và Ac nhanh chóng bị mờ đục do tạo thành lớp hiđroxit ở trên bề mặt. Riêng La có tính tự cháy, khi

cọ xát hay va đập nó bốc cháy trong không khí.

Khi đun nóng, các kim loại tác dụng với đa số nguyên tố không-kim loại: với oxi, hiđro, halogen, lưu huỳnh, nito, cacbon, silic, bo tạo thành oxit E₂O₃, EH₃, EX₃, E₂S₃, E₄C₃, ESi₂, EB₆.

Với nước, Sc và Y chỉ tác dụng khi đun nóng vì bị màng oxit bao bọc còn La và Ac tác dụng chậm với nước:

$$2E + 6H_2O = 2E(OH)_3 + 3H_2$$

Tất cả đều tan trong dung dịch axit thông thường giải phóng khí hiđro. Khi tan trong dụng dịch HNO_3 loãng, các kim loại có thể khử axit tạo thành NH_4NO_3 .

Ví du:

$$8Sc + 30HNO_3 = 8Sc(NO_3)_3 + 3NH_4NO_3 + 9H_2O$$

Về tính chất hóa học, nói chung Y và La giống nhiều với các lantanoit nên được gộp chung vào họ kim loại đất hiếm.

Trang thái thiên nhiên và phương pháp điều chế

Scanđi, ytri, lantan và actini thuộc những nguyên tố rất phân tán trong thiên nhiên. Trữ lượng trong vỏ Quả Đất của Sc là 3.10^{-4} , của Y là $2,6.10^{-4}$, của lantan là $2,5.10^{-4}$ và của Ac là 5.10^{-15} % tổng số nguyên tử. Chúng ít tạo nên khoáng vật riêng mà ở lẫn trong khoáng vật đa kim của các kim loại đất hiếm, ví dụ như cát monazit là hỗn hợp của orthophotphat kim loại đất hiếm (MPO₄) và thori orthosilicat (ThSiO₄), toveitit (Y,Sc)₂Si₂O₇), gađolinit (Be₂Y₂FeSi₂O₁₀), xenotim (MPO₄), batnesit (MCO₃F), ở đây M là kim loại hóa trị ba.

Năm 1794, nhà hóa học Phần Lan là Gađolin (G. Gadolin, 1760-1852) đã tách được từ khoáng vật ytechit (khoáng vật này có tên gọi đó vì được phát hiện ở Ytterby gần Stockholm của Thụy Điển, sau này được gọi là gađolinit) một oxit mới gọi là "đất ytri". Thực ra "đất ytri" là một hỗn hợp oxit của các kim loại. Năm 1835, từ đất ytri, nhà hóa học Thụy Điển là Mozanđe (G. Mosanđer, 1797-1858, học trò Berzélius) đã tách được oxit của ytri, oxit của techi và oxit của echi. Tuy nhiên trước đó, năm 1828 nhà hóa học Đức là Vôle (Wh ö ler) đã điều chế mẫu kim loại ytri đầu tiên tuy chưa được tinh khiết lắm khi dùng kali khử YCl₃ ở nhiệt độ cao.

Năm 1839, Mozande tách được từ "đất xeri" một oxit màu vàng của xeri và "đất lantan". Năm 1841, từ "đất lantan", ông tách ra được oxit màu trắng của lantan và oxit màu đỏ của diđim, về sau biết được điđim là hai nguyên tố neođim và prazeođim. Sau đó Mozande lần đầu tiên đã điều chế lantan kim loại theo phương pháp của Vôle. Tên gọi lantan xuất phát từ chữ lantos, tiếng Hi Lạp có nghĩa là giấu giếm vì khó phát hiện.

Năm 1879, nhà hóa học Thụy Điển là Ninxon (F. Nilson, 1840-1899) từ "đất ytri" đã tách được oxit của một nguyên tố mới. Nguyên tố mới đó được phát hiện bằng phương pháp

phân tích quang phổ và có tên là scanđi (Scanđinavie là quê hương của Ninxon). Nguyên tố này chính là nguyên tố ekabo mà năm 1871 Menđêleep đã tiên đoán rất chi tiết. Những kết quả công bố của Ninxon về scanđi rất phù hợp với lời tiên đoán của Menđêleep. Bởi vậy, phát minh của Ninxon là bằng chứng xác đáng đầu tiên chứng minh sự đúng đắn của bảng tuần hoàn và định luật tuần hoàn của Menđêleep. Như đã biết, ekabo là một trong bốn nguyên tố mà Menđêleep đã tiên đoán chi tiết. Năm 1937, scanđi kim loại dạng tinh khiết mới được điều chế bằng phương pháp điện phân hỗn hợp nóng chảy của ScCl₃, KCl và LiCl.

Actini là nguyên tố phóng xạ thiên nhiên đã được nhà khoa học người Pháp là Đơbiecnơ (A. Debierne) phát hiện năm 1899 ở trong sản phẩm còn lại sau khi đã tách Ra và Po từ quặng uran. Như đã biết, năm 1898 hai nguyên tố phóng xạ này đã được Pie Quyri và Mari Quyri tách được từ quặng uran. Tên gọi *actini* xuất phát từ chữ *actis*, tiếng Hi Lạp nghĩa là tia, nguyên tố được phát hiện do tia phóng xạ. Actini là sản phẩm trung gian của quá trình phân rã phóng xạ của uran:

$$^{235}_{92}U \xrightarrow{\alpha} ^{231}_{90}Th \xrightarrow{\beta} ^{231}_{91}Pa \xrightarrow{\alpha} ^{227}_{89}Ac \xrightarrow{\beta} ^{227}_{90}Th \longrightarrow$$

trong một tấn quặng uran có 0,06 mg actini.

Kim loại scandi không có công dụng quan trọng, ytri có tiết diện bắt notron bé nên được dùng làm vật liệu xây dựng lò phản ứng hạt nhân, lantan kim loại được sử dụng rộng rāi hơn ở dạng mishmetall là hợp kim của các đất hiểm chứa 25% La dùng làm đá lửa và chất cho thêm vào các hợp kim.

Quá trình tách kim loại từ quặng khá phức tạp: tuyển khoáng, chế hóa tinh quặng bằng các phương pháp hóa học khác nhau để được các sản phẩm trung gian rồi luyện kim loại từ những sản phẩm trung gian. Những sản phẩm trung gian đó thường là E_2O_3 , EF_3 và ECl_3 . Người ta dùng canxi, magie hay kali khử các hợp chất đó ở nhiệt độ cao hay điện phân muối halogenua nóng chảy cùng với halogenua kim loại kiềm.

Ví dụ:

$$2YF_3 + 3Ca = 2Y + 3CaF_2$$

 $La_2O_3 + 3Mg = 2La + 3MgO$

Công nghệ điều chế Sc₂O₃ từ toveitit tương đối đơn giản:

$$2Sc_{2}Si_{2}O_{7} + 6C = Sc_{4}C_{3} + 4SiO_{2} + 3CO_{2}$$

$$Sc_{4}C_{3} + 12HCI = 4ScCI_{3} + 3C + 6H_{2}$$

$$2ScCI_{3} + 3H_{2}C_{2}O_{4} = Sc_{2}(C_{2}O_{4})_{3} + 6HCI$$

$$Sc_{2}(C_{2}O_{4})_{3} = Sc_{2}O_{3} + 3CO_{2} + 3CO$$

Công nghệ tách Y và La từ các khoáng vật của đất hiếm phức tạp hơn nhiều và phụ thuộc vào từng khoáng vật riêng. Chế hóa các tình quặng với axit clohidric, axit sunfuric, natri

hiđroxit để được hỗn hợp muối của các kim loại. Những kĩ thuật thường dùng để tách riêng các muối kim loại đó là kết tinh phân đoạn, trao đổi ion và chiết bằng dung môi hữu cơ.

Actini được tách từ quặng uran hoặc được tạo nên khi bắn nơtron vào ²²⁶Ra ở trong lò phản ứng hạt nhân:

$$^{226}_{88}$$
Ra + $^{1}_{0}$ n \longrightarrow $^{227}_{88}$ Ra $\xrightarrow{\beta}$ $^{227}_{89}$ Ac \longrightarrow

HỢP CHẤT CỦA Sc, Y và La

Oxit E_2O_3

Các oxit E_2O_3 đều là chất rắn màu trắng, rất khó nóng chảy. Oxit Sc_2O_3 kém bazơ hơn các oxit khác và giống với Al_2O_3 . Nó cũng lưỡng tính và tan trong dung dịch NaOH đặc và dư tạo thành $Na_3[Sc(OH)_6]$.

Các oxit Y_2O_3 , La_2O_3 và Ac_2O_3 giống với CaO. Chúng hấp thụ khí CO_2 , hơi nước trong khí quyển tạo thành cacbonat, hidroxit. Tác dụng của chúng với nước phát nhiều nhiệt.

Ví du:

$$La_2O_3 + 3H_2O = 2La(OH)_3$$
, $\Delta H^0 = -154 \text{ kJ}$

Các oxit có thể dùng làm chất xúc tác. Oxit La_2O_3 dùng để chế loại thủy tinh làm kính bảo hộ (ngăn tia tử ngoại). Các oxit Sc_2O_3 và Y_2O_3 dùng làm vật liệu từ dùng trong vô tuyến điện tử và máy tính. Riêng Y_2O_3 còn dùng để chế gốm chịu nhiệt.

Các oxit E_2O_3 có thể được tạo nên bằng tác dụng trực tiếp của kim loại với oxi hoặc bằng cách nhiệt phân hidroxit, các muối nitrat, cacbonat, oxalat.

Hidroxit E(OH)3

Các hiđroxit E(OH)₃ là kết tủa nhầy màu trắng. Độ tan trong nước và tính bazơ tăng lên từ Sc đến Ac. Hiđroxit Sc(OH)₃ là chất lưỡng tính. Hiđroxit La(OH)₃ là bazơ mạnh, tương đương Ca(OH)₂, hấp thụ khí CO₂ trong khí quyển, tác dụng với muối amoni giải phóng khí NH₃. Khi đun nóng, các hiđroxit mất nước biến thành oxit.

Các hiđroxit $E(OH)_3$ được tạo nên khi dung dịch muối E^{3+} tác dụng với kiềm hay amoniac. Hiđroxit $Sc(OH)_3$ còn có thể điều chế bằng tác dụng của muối Sc^{3+} với $Na_2S_2O_3$:

$$2ScCl_3 + 3Na_2S_2O_3 + 3H_2O = 2Sc(OH)_3 + 3SO_2 + 3S + 6NaCl$$

Trihalogenua EX,

Các trihalogenua đều là chất rắn màu trắng. Các triflorua EF₃ khó nóng chảy (từ 1450 đến 1550°C), không tan trong nước, còn các clorua, bromua và iodua có nhiệt độ nóng chảy

thấp hơn (từ 800 đến 900°C), hút ẩm, tan trong nước và bị thủy phân tạo thành polime oxohalogenua EOX. Thực tế có thể dùng ion F^- để phân tích định tính những kim loại này. Những halogenua tan, khi kết tinh từ dung dịch đều ở dạng hiđrat, ví dụ $SeCl_3.6H_2O$, $YCl_3.6H_2O$, $LaCl_3.7H_2O$. Khi đun nóng trong khí quyển HCl, các hiđroxit này mất nước biến thành muối khan.

Ví du:

$$YCl_3.6H_2O \xrightarrow{HCl} YCl_3 + 6H_2O$$

Nếu không có mặt khí HCl, các hiđrat biến thành oxoclorua.

Ví dụ:

$$ScCl_3.6H_2O = ScOCl + 5H_2O + 2HCl$$

Riêng ScF₃, giống với AlF₃, có thể kết hợp với florua kim loại kiểm tạo nên muối hexafloroscandiat tan như Na₃[ScF₆] và K_3 [ScF₆].

Các triflorua EF₃ có thể điều chế bằng tác dụng trực tiếp của nguyên tố hoặc tác dụng của florua kim loại kiểm với dung dịch muối của Sc, Y và La.

Các trihalogenua còn lại có thể điều chế bằng tác dụng trực tiếp của các nguyên tố hoặc tác dụng của kim loại hay oxit kim loại với dung dịch axit halogenhiđric hoặc bằng cách đun nóng oxit kim loại với muối amoni halogenua.

Ví du:

$$2La + 3F_2 = 2LaF_3$$

 $La_2O_3 + 6HCl = 2LaCl_3 + 3H_2O$
 $La_2O_3 + 6NH_4I = 2LaI_3 + 6NH_3 + 3H_2O$

Các muối khác của E3+

Các muối sunfat và nitrat đều tan trong nước và khi kết tinh từ dung dịch đều ở dạng hiđrat. Các muối cacbonat và oxalat đều ít tan. Giống với nhôm, các nguyên tố nhóm IIIB tạo nên muối kép kiểu ME(SO₄)₂, M₂E(NO₃)₅, ME(CO₃)₂ và ME(C₂O₄)₂ (muối kép được viết ở dạng khan trong đó M là kim loại kiềm và NH₄⁺). Sự tạo thành muối kép giải thích sự hòa tan muối cacbonat của các kim loại nhóm IIIB trong dung dịch bão hòa cacbonat kim loại kiềm hay amoni:

$$K_2CO_3 + La_2(CO_3)_3 + 12H_2O = K_2CO_3.La_2(CO_3)_3.12H_2O$$

Phức chất của Sc, Y và La

Các cation kim loại Sc^{3+} , Y^{3+} và La^{3+} tạo nên những phức chất tương đối bền với những phối tử nhiều càng như ion oxalat, ion β -đixetonat, EDTA ... Khả năng tạo phức giảm xuống từ Sc đến La theo chiều tăng của bán kính ion.

1.810.0

Khi thêm dung dịch oxalat kim loại kiểm vào dung dịch muối E^{3+} , muối oxalat của E^{3+} sẽ kết tủa và độ tan của kết tủa đó ở trong dung dịch oxalat dư giảm xuống rõ rệt từ Sc đến La: $Sc_2(C_2O_4)_3$ tan dễ dàng tạo thành phức chất $[Sc(C_2O_4)_2]$, $Y_2(C_2O_4)_3$ tan một mức độ còn $La_2(C_2O_4)_3$ tan ít.

Với axetylaxeton, các cation E^{3+} tạo nên kết tủa axetylaxetonat: $[Sc(aca)_3]$ trong đó Sc có số phối trí 6, $[Y(aca)_3H_2O]$ trong đó Y có số phối trí 7 và $[La(aca)_3(H_2O)_2]$ trong đó La có số phối trí 8. Axetylaxetonat của scanđi rất bền với nhiệt, có thể thăng hoa không bị phân hủy còn các axetylaxetonat của Y và La bị phân hủy ở khoảng $500^{\circ}C$.

Với EĐTA, các cation E^{3+} tạo nên phức chất H[E(EDTA)]. Dưới đây là hằng số bền của các ion phức đó và của ion Fe^{3+} :

	Sc ³⁺	Y ³⁺	La ³⁺	Fe ³⁺
K _b	$1,26.10^{23}$	1,26.1018	3,17.1015	$1,36.10^{25}$

Độ bền của ion phúc [E(EĐTA)] trong dung dịch giảm xuống từ Sc đến La và nói chung bé hơn so với Fe(III).

CHƯƠNG III

CÁC NGUYÊN TỐ NHÓM IVB

Nhóm IVB gồm có các nguyên tố titan (Ti), ziconi (Zr) và hafni (Hf). Dưới đây là một số đặc điểm của nguyên tố (Bảng 8).

Bảng 8 Một số đặc điểm của các nguyên tố Tì, Zr và Hf

Nguyên	Số thứ tự nguyên	Cấu hình electron	Năng lượng ion hóa, eV				Bán kính nguyên	Bán kính ion	Thế điện cực chuẩn, V
tố (E)	tố.	nguyên tử	I ₁	I ₂	I ₃	I_4	tử, Å	E⁴⁺, Å	
Ti	22	$[Ar]3d^24s^2$	6,83	13,57	24,47	43,24	1,46	0,64	-1,75(Ti ³⁺ /Ti)
Zr	40	[Kr]4d ² 5s ²	6,95	14,03	24,71	33,99	1,60	0,87	-1,43(Zr ⁴⁺ /Zr)
Hf	72	[Xe]4f ¹⁴ 5d ² 6s ²	5,5	14,9	21	31	1,59	0,86	-1,57(Hf ⁴⁺ /Hf)

Các nguyên tố Ti, Zr và Hf có cấu hình electron giống nhau của nguyên tử là $(n-1)d^2ns^2$ và là kim loại chuyển tiếp.

Năng lượng ion hóa thứ tư của chúng rất lớn, việc tạo thành ion E^{4+} đòi hỏi một năng lượng lớn nên ion đó chỉ có thể được làm bền nhờ sự tạo thành kiến trúc tinh thể có độ bền cao như oxit EO_2 . Nếu sự làm bền đó không đủ bù cho năng lượng để tạo thành ion E^{4+} thì các nguyên tử tạo nên chủ yếu các liên kết cộng hóa trị, ví dụ như trong các halogenua EX_4 (ở đây E=Ti, Zr và Hf, X= halogen).

Trong các hợp chất, trạng thái oxi hóa đặc trưng và bền nhất của cả ba nguyên tố là +4. Sở dĩ như vậy là vì ion E⁴⁺ có cấu hình electron bền của khí hiếm (8 electron). Ngoài ra Ti, Zr và Hf có thể có các trạng thái oxi hóa thấp hơn như +2 và +3. Khuynh hướng cho trạng thái oxi hóa thấp thể hiện rõ ở Ti nhưng ở những hợp chất ứng với các số oxi hóa thấp Ti đều dễ chuyển sang trạng thái +4 đặc trưng. Còn Zr và Hf tạo nên rất ít hợp chất ứng với số oxi hóa thấp. Ví dụ titan có các hợp chất TiO, Ti₂O₃, TiO₂, TiF₃, TiF₃ và TiF₄ trong khi Zr và Hf chỉ có những

hợp chất ZrO_2 , HfO_2 , ZrF_4 và HfF_4 . Như vậy, khuynh hướng tạo nên số oxi hóa cao +4 tăng lên từ Ti đến Hf, nghĩa là ngược với khuynh hướng biến đổi trong các nguyên tố nhóm IVA.

Tuy nhiên ở trạng thái số oxi hóa +4, các nguyên tố Ti, Zr và Hf giống với Ge, Sn và Pb. Từ Ti đến Zr, bán kính nguyên tử và bán kính ion tăng lên nhưng từ Zr đến Hf lại hơi giảm xuống, coi như không biến đổi. Đây là kết quả của hiện tượng co lantanoit. Chính Zr và Hf có bán kính gần nhau như vậy, chúng có tính chất rất giống nhau và rất khó tách ra khỏi nhau. Có thể nói Zr và Hf là cặp nguyên tố khó tách ra khỏi nhau nhất, một trong những vấn đề khó khăn nhất của hóa học vô cơ.

CÁC ĐƠN CHẤT

Tính chất lí, hóa học

Titan, ziconi và hafni là những kim loại màu trắng bạc. Ở nhiệt độ thường, tinh thể kim loại có mạng lưới lục phương (dạng α) và ở nhiệt độ cao có mạng lưới lập phương tâm khối (dạng β). Titan thuộc kim loại nhẹ còn ziconi và hafni là kim loại nặng. Dưới đây là một số hằng số vật lí của các kim loại (Bảng 9).

Bảng 9 Hằng số vật lí quan trọng của các kim loại

Kim loại (E)	Nđnc., °C	N₫s., °C	Tỉ khối	Độ cứng (thang Moxơ)	Độ dẫn điện (Hg=1)
Ti	1668	3260	4,51	4	2,1
Zr	1855	4330	6,51	4,5	2,3
Hf	2220	5400	13,31	_	, 3,1

Cả ba kim loại đều khó nóng chảy và khó sối. Về nhiệt độ nóng chảy, nhiệt độ sối, độ cứng, độ dẫn điện và dẫn nhiệt, cả ba kim loại tương đương với những kim loại chuyển tiếp khác như Fe, Ni, v.v...

Các kim loại tinh khiết đều dễ chế hóa cơ học nhưng khi chứa tạp chất O, N, C, H, chúng trở nên giòn. Chúng truyền cho các loại thép đặc biệt độ bền ăn mòn, độ cứng và độ bền cơ học. Thép chứa titan dùng làm đường ray và bánh xe tàu hỏa.

Hợp kim của titan dùng để chế tạo động cơ máy bay phản lực và tên lửa. Thép chứa ziconi dùng làm những tấm chắn của xe bọc thép.

Cả ba nguyên tố có một số đồng vị thiên nhiên: Ti có 5 đồng vị, bền nhất là 48Ti; Zr có

5 đồng vị, bền nhất là ⁹⁰Zr và Hf có 6 đồng vị, bền nhất là ¹⁸⁰Hf. Đồng vị bền của Zr có tiết diện bắt nơtron rất bé trong khi đồng vị bền của Hf có tiết diện bắt nơtron rất lớn. Bởi vậy, khi dùng hợp kim của Al với Zr để làm vật liệu chế tạo lò phản ứng hạt nhân, Zr đó cần phải được loại sạch hết Hf.

Ở nhiệt độ thường, cả ba kim loại (E) đều bền với không khí và nước nhờ có màng oxit EO₂ mỏng rất bền bảo vệ. Ở nhiệt độ cao, chúng rất hoạt động hóa học: tác dụng với oxi tạo thành oxit EO₂, với halogen tạo thành halogenua EX₄ (ở đây X=halogen), với lưu huỳnh tạo thành sunfua ES₂, với nitơ tạo thành nitrua EN, với cacbon tạo thành cacbua EC, với bo tạo thành borua EB₂. Những hợp chất nitrua, cacbua, silixua và borua của chúng thường là hợp chất kiểu xâm nhập có thành phần biến đổi, cứng, rất bền nhiệt và rất khó nóng chảy. Một trong những vật liệu khó nóng chảy nhất (4000°C) chứa 80% TiC và 20% HfC. Ở dạng bột mịn, cả ba kim loại tự cháy ở nhiệt độ thường.

Ở nhiệt độ thường, cả ba kim loại đều bền với các tác nhân ăn mòn. Đặc biệt titan rất bền với nước biển và nhiều tác nhân ăn mòn khác nên là một vật liệu không thay thế được để chế tạo tuôcbin, máy hóa, vỏ tàu thủy. Cả ba kim loại không tác dụng với axit.

Khi đun nóng, riêng titan tan trong dung dịch HCl theo phản ứng:

$$2Ti + 6HCl = 2TiCl_3 + 3H_3$$

Cả ba kim loại ở dạng bột mịn có thể tác dụng với dung dịch HF nóng:

$$E + 6HF = H_2[EF_6] + 2H_2$$

Tuy bị axit nitric đặc thụ động hóa ở nhiệt độ thường, cả ba kim loại ở dạng bột mịn có thể tác dụng với axit sunfuric đặc, cường thủy và nhất là hỗn hợp của axit nitric và axit flohiđric:

Ví du:

$$2\text{Ti}$$
 + $6 \text{ H}_2 \text{SO}_4 (\text{dac})$ = $\text{Ti}_2 (\text{SO}_4)_3$ + 3 SO_2 + $6 \text{H}_2 \text{O}$
 3Zr + 4HNO_3 + 18 HCl = $3 \text{H}_2 [\text{ZrCl}_6]$ + 4 NO + $8 \text{H}_2 \text{O}$
 3E + 4 HNO_3 + 18 HF = $3 \text{H}_2 [\text{EF}_6]$ + 4 NO + $8 \text{H}_2 \text{O}$

Cả ba kim loại đều bền với dung dịch kiềm. Riêng Ti tác dụng với kiềm nóng chảy, H
f tác dụng với KHF_2 nóng chảy:

$$Ti$$
 + 4 NaOH = Na₄TiO₄ + 2H₂
Hf + 4 KHF₂ = K₂[HfF₆] + 2KF + 2H₂

Trạng thái thiên nhiên và phương pháp điều chế

Trong thiên nhiên titan thuộc nguyên tố rất phổ biến, đứng hàng thứ mười sau các kim loại Al, Fe,Ca, Mg ... ziconi và hafni thuộc nguyên tố phân tán. Tuy nhiên, ziconi có phổ biến

hơn so với các kim loại Ni, Cu, Zn ...,Hf có phổ biến hơn Au, Hg... Trong vỏ Trái Đất titan chiếm 0,25%, Zr chiếm 4.10⁻³% và Hf chiếm 5.10⁻⁵% tổng số nguyên tử. Những khoáng vật chính của titan là rutin (TiO₂), inmenit (FeTiO₃) và peropskit (CaTiO₃), của ziconi là zicon (ZrSiO₄) và bađeleit (ZrO₂). Tên khoáng vật zicon (zircon) là tên gọi chệch của chữ zargum tiếng Ả Rập có nghĩa là màu vàng chối vì zicon đã biết từ thời cổ xưa là một loại đá quý trong suốt và có các màu đẹp, nhất là màu vàng. Hafni không có khoáng vật riêng mà thường đồng hành với ziconi. Trong các khoáng vật, lượng Hf thường bằng khoảng 2% lượng Zr.

Nước ta có mỏ titanomanhetit ở núi Chúa (Thái Nguyên) và Tam Kì (Quảng Nam), có sa khoáng inmenit và zicon ở ven biển tỉnh Quảng Ninh và các tỉnh miền Trung.

Titan được nhà hóa học người Đức Claprot (Martin Hendrich Klaproth, 1743-1817) phát hiện trong khoáng vật rutin vào năm 1795. Tên gọi của nguyên tố đó là tên của ông tổ thần núi (theo thần thoại Hi Lạp). Đến năm 1825, Beczeliuyt lần đầu tiên đã điều chế được kim loại titan ở dạng bột khi khử $K_2[TiF_6]$ bằng natri ở nhiệt độ cao. Năm 1910 nhà hóa học Mỹ là Hunter đã điều chế được titan tinh khiết hơn khi dùng natri hay kali khử tetraclorua ở 700° C và đến những năm 40 của thế kỉ này titan kim loại mới được sản xuất ở quy mô công nghiệp.

Năm 1978 Claprot đã chế được titan đioxit từ khoáng vật zicon và đến năm 1824 Beczeliuyt lần đầu tiên đã điều chế được ziconi kim loại ở dạng bột khi dùng natri hay kali khử $K_2[ZrF_6]$ ở nhiệt độ cao. Tên gọi ziconi được lấy từ tên khoáng vật zicon. Năm 1925 người ta điều chế được ziconi tinh khiết.

Nguyên tố hafni được phát hiện tình cờ vào năm 1923. Khi chế tạo những ống Rơnghen mới và nghiên cứu phổ Rơnghen của các nguyên tố, hai nhà khoa học là Heversy (Hungari) và Coster (Hà Lan) làm việc ở Copenhaghen đã phát hiện ra những vạch quang phổ mới trong phổ Rơnghen của nguyên tố ziconi. Đó là những vạch của một nguyên tố mới gọi là hafni. Tên gọi này được lấy từ chữ hafnia tiếng La Tinh là tên cổ của thủ đô Copenhaghen.

Hàng năm trên thế giới sản xuất hàng vạn tấn titan từ inmenit và rutin. Những nước khai thác nhiều khoáng vật của titan là Australia, Nam Phi, Canada, Na Uy, Malaixia. Những nước khai thác nhiều khoáng vật zicon là Australia và Mỹ. Những hợp kim ferotitan dùng trong ngành luyện kim chứa 10-50% Ti được điều chế bằng cách dùng than cốc khử hỗn hợp quặng sắt và quặng titan. Việc điều chế titan kim loại tinh khiết là rất khó khăn. Ở nhiệt độ cao Ti rất hoạt động, tác dụng với oxi, nitơ, cacbon nên không thể dùng than khử rutin trong lò cao như đối với gang. Người ta phải clo hóa các khoáng vật của titan khi có mặt than ở nhiệt độ 800-1000°C:

$$TiO_2 + 2Cl_2 + 2C = TiCl_4 + 2CO$$

2FeTiO₃ + 7Cl₂ + 6C = 2TiCl₄ + 2FeCl₃ + 6CO

Cần chú ý rằng việc clo hóa trực tiếp rutin hay inmenit không thể thực hiện được vì quá trình đẩy khí oxi ra bằng khí clo là quá trình thu nhiệt và giảm entropi cho nên cần phải dùng cacbon để liên kết với oxi cho phản ứng phát nhiệt và tăng entropi.

Ví du:

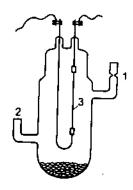
$$TiO_2(r, rutin) + 2Cl_2(k) = TiCl_4(k) + O_2(k), \quad \Delta G^9 = 162kJ$$
 nhưng:

$$TiO_2(r,rutin) + 2C(than chi) + 2Cl_2(k) = TiCl_4(k) + 2CO(k), \quad \Delta G^0 = -112kJ$$

Ở nhiệt độ thường TiCl₄ là chất lỏng (nđs. là 136°C) và FeCl₃ là chất rắn (nđs. là 315°C). Khi clo hóa inmenit với sự có mặt của than, dựa vào nhiệt độ sôi khác nhau nhiều, người ta tách TiCl₄ ra khỏi FeCl₃ bằng cách làm bay hơi phân đoạn.

Sau đó cho hơi TiCl₄ đi qua magie nóng chảy hay natri nóng chảy trong khí quyển Ar hay He:

$$TiCl_4 + 2Mg = Ti + 2MgCl_7$$


Khi rửa với nước, MgCl₂ tan, còn lại Ti kim loại ở dạng khối xốp.

Phương pháp nhiệt-kim loại này cũng được dùng để điều chế Zr và Hf kim loại từ tetraclorua. Ngoài ra người ta có thể thay ECl₄ bằng K₂[EF₆]:

$$ECl_4 + 2Mg = E + 2MgCl_2$$

 $K_2[EF_6] + 4Na = E + 4NaF + 2KF$

Cả ba kim loại Ti, Zr và Hf điều chế theo phương pháp nhiệt kim loại chưa có độ tinh khiết cao. Muốn tinh chế, trước hết người ta nung kim loại chưa tinh khiết ở 1000°C trong chân không để loại sạch Mg dư rồi áp dụng phương pháp Aken-Đơ Bôe (Van Arken và De Boer, người Hà Lan) được đề ra năm 1925. Phương pháp này lợi dụng tính dễ bay hơi của các iođua Til₄, Zrl₄ và Hfl₄ và khả năng phân hủy của chúng ở nhiệt độ cao tạo thành kim loại, trong khi iođua của các nguyên tố tạp chất không có khả năng đó.

Ví dụ để tinh chế kim loại titan, trong phòng thí nghiệm người ta dùng bình bằng thủy tinh Pirec (Hình 22). Qua ống 1, hút không khí ở trong bình ra để tạo chân không và qua ống 2 đổ vào bình một hỗn hợp của bột kim loại titan và iot (lượng rot được lấy ít hơn 10 lần so với lượng iot cần thiết để tạo thành TiI₄). Đặt bình thủy tinh vào lò điện và đun nóng ở 400°C. Sợi dây titan 3 ở trong bình được nối với hai điện cực và được đốt nóng bằng dòng điện. Ở 200°C Ti và I₂ tác dụng với nhau tạo thành TiI₄, hợp chất này thăng hoa ở

Hình 22. Dụng cự để tinh chế titan kim loại

377°C. Khi tiếp xúc với sợi dây titan 3 được đốt nóng đến 1200-1400°C, hơi TiI4 phân hủy:

$$TiI_4 = Ti + 2I_2 ,$$

titan kim loại kết tình ở trên sợi dây titan còn hơi iot ngưng tụ ở phần nguội của bình lại tác

dụng với một lượng mới titan kim loại cần tinh chế. Quá trình lặp đi lặp lại như vậy có thể tạo nên những thanh titan có đường kính 5-30mm và đặc biệt tinh khiết, chứa đến 99,9999% Ti. Chính phương pháp Aken-Đơ Bôe lần đầu tiên đã được dùng để điều chế Zr tinh khiết. Ngày nay phương pháp đó được dùng để điều chế một số kim loại khác nữa đặc biệt tinh khiết.

Tách riêng từng nguyên tố cặp Zr-Hf

Ziconi và hafni là cặp nguyên tố đồng hành với nhau rất giống nhau về tính chất, việc tách chúng ra khỏi nhau gặp rất nhiều khó khăn. Trong công nghệ người ta phải dùng một số phương pháp khác nhau để tách riêng chúng.

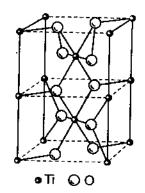
Phương pháp kết tinh phán đoạn dựa vào độ tan hơi khác nhau của K_2ZrF_6 và K_2HfF_6 là 0,07 và 0,10 mol/l. Mỗi khi kết tinh muối phức hexafloro, muối K_2HfF_6 tan nhiều hơn ở lại chủ yếu trong dung dịch còn muối K_2ZrF_6 tan ít hơn tập trung chủ yếu vào tinh thể. Lặp đi lặp lại nhiều lần quá trình kết tinh lại tinh thể và quá trình kết tinh tinh thể từ dung dịch cho đến khi thu được muối phức hexafloro tinh khiết của riêng từng kim loại.

Các muối hexafloro này có được khi nấu chảy khoáng vật zicon (có chứa Hf) với $K_2 SiF_6$:

$$ZrSiO_4 + K_2SiF_6 = K_2[ZrF_6] + 2SiO_2$$

Phương pháp chiết dựa vào khả năng chiết dung dịch nước muối nitrat của ziconi và hafni bằng tributy/photphat (TBP), Zr(IV) có khả năng tạo phức mạnh hơn Hf(IV) nên chủ yếu đi vào dung môi tributy/photphat ở dạng ZrO(NO₃)₂.2TBP còn Hf ở lại chủ yếu trong dung dịch nước. Lặp đi lặp lại quá trình chiết đó hàng chục lần sẽ thu được muối tinh khiết của riêng từng kim loại.

Phương pháp trao đổi ion: khi dung dịch muối tetraclorua của ziconi và hafni trong HCl 6N (lượng HCl là cần thiết để ngăn cản sự polime hóa của các hợp chất trong dung dịch) đi qua cột đựng nhựa cationit, kim loại được nhựa hấp thụ. Zr(IV) tạo phức với axit xitric (H₃Cit) mạnh hơn Hf(IV) nên khi dùng dung dịch axit xitric trong HCl 6N để rửa cột nhựa đã hấp thụ ziconi và hafni, ziconi được axit xitric rửa nhanh khỏi cationit ở dạng ZrO(H₂Cit)₂ còn hafni ở lại lâu hơn trên cationit. Lặp lại một số lần quá trình trao đổi ion như vậy sẽ thu được muối tinh khiết của riêng từng kim loại.


HỌP CHẤT CỦA Ti(IV), Zr(IV) và Hf(IV)

Dioxit EO2

Các oxit TiO₂, ZrO₂ và HfO₂ là chất rắn màu trắng, tổn tại dưới một số dạng tinh thế khác nhau. Ba dạng tinh thể của TiO₂ là rutin, amatazơ và brukit, đều tồn tại trong thiên nhiên dưới dạng khoáng vật, trong đó phổ biến nhất là rutin. Rutin có mạng lưới tứ phương (Hình 23), mỗi ion Ti⁴⁺ được ion O²⁻ bao quanh kiểu bát kiến trúc tinh thể điển hình của những hợp

chất có công thức chung là MX_2 (trong đó M là kim loại, X là oxi hay flo). Dạng tinh thể đơn tà của ZrO_2 tồn tại trong thiên nhiên là baleđeit đồng hình với một dạng tinh thể của HfO_2 và đều có kiến trúc không đều đặn, trong đó Zr và Hf có số phối trí 8.

Cả ba đioxit đều cứng, khó nóng chảy và bền nhiệt. Dưới đây là nhiệt độ nóng chảy và năng lượng Gip tạo thành chuẩn của chúng:

Hình 23. Kiến trúc của tinh thể rutin

$$\begin{array}{cccc} & TiO_2 & ZrO_2 & HfO_2 \\ Ndnc., ^{\circ}C & 1870 & 2850 & 2900 \\ \Delta G_{ii}^{\circ} \ , \ kJ/mol & -889 & -1025 & -1054 \\ \end{array}$$

Sự tăng nhiệt độ nóng chảy trong dãy đioxit phản ảnh sự tăng mức độ ion của liên kết E-O.

Cả ba đioxit đều khá trơ về mặt hóa học. Chúng không tác dụng với nước, dung dịch loãng của axit (trừ HF) và kiềm, chỉ tác dụng chậm với axit khi đun nóng lâu và tác dụng với kiềm nóng chảy.

Ví du:

$$TiO_2 + 6HF = H_2TiF_6 + 2H_2O$$

 $TiO_2 + 2NaOH = Na_2TiO_3 + H_2O$
 $TiO_2 + Na_2CO_3 = Na_2TiO_3 + CO_2$

Do trơ về hóa học, ${\rm TiO_2}$ được dùng làm chất độn cho cao su, bột màu cho chất dẻo và sơn. Do rất khó nóng chảy và bền hóa học, ${\rm ZrO_2}$ được dùng làm chén nung, lớp lót trong của lò đốt ở nhiệt độ cao.

Các đioxit EO_2 được tạo nên khi đốt cháy kim loại trong khí oxi hoặc phân hủy hiđroxit của $\mathrm{E}(\mathrm{IV})$ ở nhiệt độ cao.

Trong công nghiệp, ${\rm TiO_2}$ được điều chế bằng cách đốt cháy ${\rm TiCl_4}$ trong khí oxi ở 900°-1000°C:

$$TiCl_4 + O_2 = TiO_2 + 2Cl_2$$

hoặc bằng cách thủy phân titanyl sunfat. Dưới đây là sơ đồ phản ứng của quá trình sản xuất ${\rm TiO_2}$ từ tinh quặng inmenit.

Chế hóa tinh quặng inmenit đã nghiên mịn với axit sunfuric đặc:

$$FeTiO_3 + 2H_2SO_4 = TiOSO_4 + FeSO_4 + 2H_2O$$

Hòa tan sản phẩm bằng nước dư rồi làm lạnh dung dịch để muối sắt kết tinh ở dạng

FeSO₄.7H₂O. Đun sôi dung dịch TiOSO₄ với nước, axit metatitanic lắng xuống:

$$TiOSO_4 + 2H_2O = H_2TiO_3 + H_2SO_4$$

Nung axit metatitanic & 900-1000°C, thu được TiO_2 :

$$H_2TiO_3 = TiO_2 + H_2O$$

Tên thương mại của TiO₂ là *trắng titan*. Trắng titan là bột màu trắng dùng tốt hơn trắng chì (Pb(OH)₂.2PbCO₃) ở chỗ không độc hại và không bị xám khi để lâu trong không khí. Ngoài việc dùng làm bột màu, trắng titan còn được dùng để chế các loại thủy tinh, sứ, men sứ và gốm chiu nhiệt.

Trong công nghiệp, ZrO2 được sản xuất từ zicon theo sơ đồ sau.

Nấu chảy zicon trong NaOH:

$$ZrSiO_4 + 4NaOH = Na_2ZrO_3 + Na_2SiO_3 + 2H_2O$$

Hòa tan sản phẩm phản ứng trong nước nóng, Na₂SiO₃ tan còn Na₂ZrO₃ bị thủy phân tạo nên kết tủa ZrO₂·H₂O:

$$Na_2ZrO_3 + 2H_2O = ZrO_2.H_2O + 2NaOH$$

Chế hóa kết tủa với dung dịch HCl:

$$ZrO_2.H_2O + 2HCl = ZnOCl_2 + 2H_2O$$

và thêm NH3 vào dung dịch để kết tủa lại:

$$ZrOCl_2 + 2NH_3 + 2H_2O = ZrO_2.H_2O + 2NH_4Cl$$

Nung kết tủa ở 900°C, thu được ZrO₂:

$$ZrO_2.H_2O = ZrO_2 + H_2O$$

Hiđroxit của Ti(IV), Zr(IV) và Hf(IV)

Các hiđroxit của E(IV) là kết tủa trắng, nhầy có thành phần biến đổi EO_2 nH_2O . Kết tủa mới được tạo nên (dạng α) chứa nhiều nhóm cầu OH, khi để lâu mất bốt nước, tiếp tục bị polime hóa và chứa nhiều cầu O (dạng β):

Bởi vậy, dạng α hoạt động hóa học hơn dạng β . Ví dụ $TiO_2.2H_2O$, thường được gọi là axit orthotitanic (H_4TiO_4) hoạt động hơn $TiO_2.H_2O$, thường được gọi là axit metatitanic (H_2TiO_3). Nhiệt độ và môi trường kiểm làm cho dạng α dễ chuyển sang dạng β .

Các hiđroxit $EO_2.nH_2O$ không biểu lộ thật rõ tính axit và tính bazơ vì chúng không tạo nên dung dịch thật với nước mà cả với dung dịch axit và dung dịch kiểm loãng. Khi tác dụng với axit và kiềm, kết tủa hiđroxit chuyển sang dạng dung dịch keo chứa những hạt keo lớn ở dạng polime được hiđrat hóa. Trong đó, titan(IV) có kích thước bé nên ít bị polime hóa hơn nhờ sự tạo phức. Ví dụ như $TiO_2.nH_2O$ có thể tan trong dung dịch HCl đặc tạo nên dung dịch H_2TiCl_6 và tan trong dung dịch kiềm đặc tạo nên dung dịch của anion phức hiđroxo $Ti(OH)_6^{2-}$. Các hiđroxit $ZrO_2.nH_2O$ và $HfO_2.nH_2O$ không tan trong dung dịch kiềm, cả ba hidroxit khi tác dụng với dung dịch đặc của axit mạnh thường không tạo nên muối trung hòa mà tạo nên muối oxo có công thức chung EOX_2 (trong đó $X=Cl^-$, Br^- , l^- , NO_3^- và SO_4^{2-}).

Ví du:

$$Ti(OH)_4 + H_2SO_4 = TiOSO_4 + 3H_2O$$

 $Zr(OH)_4 + 2HC! = ZrOCl_2 + 3H_2O$

Từ dung dịch axit, có thể tách ra những hiđrat tinh thể $TiOCl_2.2H_2O$, $TiOSO_4.2H_2O$, $ZrOCl_2.8H_2O$, $HfOCl_2.8H_2O$. Trước đây ion TiO^{2+} được gọi là titany!, ion ZrO^{2+} là zicony! và ion HfO^{2+} là hafnyl. Nhưng đến nay người ta biết rằng trong dung dịch cũng như tinh thể của các hợp chất EOX_2 đó không có mặt ion EO^{2+} . Ví dụ trong tinh thể $TiOSO_4.H_2O$ không có ion TiO^{2+} mà có mạch đài $(TiO)_n^{2n+}$:

nối với ion SO_4^{2-} sao cho mỗi nguyên tử Ti được bao quanh kiểu bát diện bởi 6 nguyên tử O của ion SO_4^{2-} và của H_2O . Trong dung dịch và trong tinh thể $ZrOCl_2.8H_2O$ cũng không có ion riêng ZrO^{2+} mà có ion tetrame $[Zr_4(OH)_8(H_2O)_{16}]^{8+}$:

trong đó Zr có số phối trí 8 và được liên kết với nhau qua nhóm cầu OH.

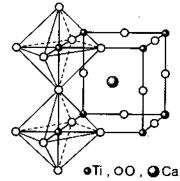
Tất cả các muối $\cos EOX_2$ được coi là những sản phẩm của phản ứng thủy phân một phần của các muối E(IV), khi được thủy phân tiếp tục chúng tạo nên hiđroxit.

9,00

Các hidroxit được điều chế bằng cách thủy phân các tetrahalogenua EX₄ (ở đây X=Cl, Br, I), các muối oxo và các muối titanat, ziconat và hafnat.

Oxit hỗn hợp của E(IV)

Các đioxit ${\rm TiO_2}$, ${\rm ZrO_2}$ và ${\rm HfO_2}$ khi tan trong kiềm nóng chảy tạo nên những hợp chất có tên gọi chung là muối titanat, ziconat và hafnat tương ứng. Thành phần của những hợp chất này rất khác nhau. Những muối đơn giản nhất có công thức: ${\rm M_2EO_3}$, ${\rm M'EO_3}$, ${\rm M_2EO_4}$ (trong đó M và M' là kim loại có số oxi hóa +1 và +2 tương ứng). Đa số các titanat, ziconat và hafnat không tan trong nước, những muối tan bị thủy phân hoàn toàn.


Phương pháp nghiên cứu kiến trúc tinh thể cho thấy trong các muối đó không có những anion riêng của EO_3^{2+} và EO_4^{4-} nên các muối đó được coi là các *oxit hỗn hợp* của Ti(IV), Zr(IV) và Hf(IV).

Ví dụ các muối titanat thường ứng với ba kiểu kiến trúc tinh thể điển hình của oxit hỗn hợp, trong đó các cation kim loại khác nhau chiếm những lỗ trống tứ diện và những lỗ trống bát diện gây nên bởi các ion O^{2-} gói ghém sít sao.

Những titanat MgTiO₃, MnTiO₃, CoTiO₃, NiTiO₃... có kiến trúc tinh thể kiểu inmenit (FeTiO₃). Tinh thể này có kiến trúc giống với corundum (Al₂O₃-α), trong đó Fe và Tí thay vị trí của Al chiếm những lỗ trống bát diện gây nên bởi những ion O² gói ghém sít sao kiểu lập phương.

Những titanat SrTiO₃, BaTiO₃ có kiến trúc tinh thể kiểu peropskit (CaTiO₃), trong đó những ion O²⁻ và Ca²⁺ gối ghém sít sao kiểu lập phương, Ti chiếm lỗ trống bát diện gây nên bởi riêng các ion O²⁻ và có số phối trí là 6 và Ca²⁺ có số phối trí là 12 đối với O²⁻ (Hình 24).

Những titanat Mg₂TiO₄, ZrTiO₄ và Co₂TiO₄ có kiến trúc tinh thể kiểu spinen (MgAl₂O₄), trong đó Ti thay Mg chiếm lỗ

Hình 24. Kiến trúc của tình thể peropskit

trống tứ diện còn Co, Zr và Mg thay Al chiếm lỗ trống bát diện gây nên bởi những ion O²⁻ gói ghém sít sao kiểu lập phương.

Các oxit hỗn hợp của Ti(IV), Zr(IV) và Hf(IV) cũng được tạo nên khi nung các hỗn hợp của các oxit tương ứng.

Tetra halogenua EX4

Các tetraflorua TiF_4 , ZrF_4 và HfF_4 là chất polime màu trắng. Tinh thể TiF_4 được cấu tạo nên bởi các nhóm bát diện TiF_6 nối với nhau qua các đỉnh F chung còn ZrF_4 và HfF_4 được cấu

tạo nên bởi các nhóm hình phản lăng trụ ZrF, và HfF, nối với nhau qua các đỉnh F chung.

 \mathring{O} điều kiện thường, trừ TiCl₄ là chất lỏng, các tetrahalogenua EX_4 khác (X=Cl, Br và I) đều là chất rắn màu trắng, tinh thể có mạng lưới phân tử. Dưới đây là nhiệt độ nóng chảy của các florua và clorua:

TiF ₄	ZrF_4	HfF_4
400°C	910°C	1020°C
TiCl ₄	$ZrCl_4$	$HfCl_4$
−23°C	437°C	435°C

Các tetrahalogenua EX₄ có tính chất giống các halogenanhiđrit tức là những halogenua của nguyên tố không-kim loại, tác dụng với nước nóng tạo thành hai axit:

$$EX_4 + 3H_2O = H_2EO_3 + 4HX$$

Giống với SnCl₄, titan tetraclorua là chất lỏng bốc khói mạnh trong không khí vì bị thủy phân hoàn toàn bởi hơi ẩm. Tinh thể TiBr₄ và TiI₄ đồng hình với tinh thể SiI₄, GeI₄ và SnI₄. Đây là một trong những điểm giống nhau giữa các nguyên tố nhóm IVA và nhóm IVB ở trạng thái oxi hóa cao.

Các tetrahalogenua EX₄ tác dụng với dung dịch HX đặc tạo nên những phức chất hexahalogeno:

$$EX_4 + 2HX = H_2[EX_6]$$

Độ bền của $H_2[EX_6]$ tăng lên từ Ti đến Hf và giảm xuống từ F đến I.

Các EX_4 cũng có thể kết hợp với các halogenua kim loại kiềm và kiềm thổ (trong dung dịch hoặc ở nhiệt độ cao) tạo nên các phức chất có công thức chung: $M_2[TiX_6]$ (ở đây X=F, Cl và Br), $M'[TiF_6]$, $M_2[ZrF_6]$, $M_3[ZrF_7]$, $M_4[ZrF_8]$, $M_2[HfF_6]$, $M_4[HfF_8]$ (ở đây M và M' là kim loại có số oxi hóa +1 và +2 tương ứng).

Các tetrahalogenua EX₄ được dùng làm nguyên liệu để điều chế và tinh chế kim loại. TiCl₄ được dùng nhiều nhất để điều chế titan kim loại trong công nghiệp. Các tetraiođua phân hủy ở nhiệt độ cao nên được dùng để điều chế các kim loại đặc biệt tinh khiết. Ngoài ra các tetrahalogenua EX₄ còn được dùng trong những tổng hợp vô cơ và hữu cơ và dùng làm chất xúc tác (các quá trình hidro hóa, oxi hóa, ankyl hóa, trùng hợp,...)

Các tetrahalogenua EX₄ được tạo nên bởi tác dụng trực tiếp của các nguyên tố. Nhưng để điều chế các halogenua đó người ta thường halogen hóa hỗn hợp của hợp chất E(IV) với than ở nhiệt độ cao:

$$EO_2 + 2C + 2X_2 = EX_4 + 2CO$$
 ($\mathring{\sigma}$ dây X=Cl, Br)
 $EC + 2X_2 = EX_4 + C$ ($\mathring{\sigma}$ dây X=Cl, Br và I)

Phương pháp này không thể áp dụng được cho các florua nên TiF₄ được điều chế bằng

tác dụng của TiCl₄ với khí HF còn ZrF₄ hay HfF₄ được điều chế bằng cách nhiệt phân muối amoni hexafloro.

Ví dụ:

$$(NH_4)_2[ZrF_6] = ZrF_4 + 2NH_3 + 2HF$$

Trong công nghiệp người ta điều chế ZrCl₄bằng phương pháp clo hóa hỗn hợp của khoáng vật zicon với than ở 900°C:

$$ZrSiO_4$$
 + 4C = ZrC + SiO + 3CO
 ZrC + $2Cl_2$ = $ZrCl_4$ + C

Sunfat của E(IV)

Cũng như các tetrahalogenua các muối sunfat khan của Ti(IV), Zr(IV) và Hf(IV) đều rất kém bền khi có mặt nước, khả năng thủy phân tăng lên từ Hf đến Ti.

Thật vậy, từ dung dịch nước nhưng có mỗi trường axit mạnh $(H_2SO_4 \text{ trên 6N})$, muối sunfat của Zr(IV) và Hf(IV) có thể kết tinh ở dạng muối trung hòa $Zr(SO_4)_2.4H_2O$ và ở dạng muối oxo $ZrOSO_4.nH_2O$ và $HfOSO_4.nH_2O$. Trong khi đó muối trung hòa $Ti(SO_4)_2$ không thể được tạo nên khi TiO_2 tác dụng với axit sunfuric đặc mà chỉ được tạo nên trong điều kiện hoàn toàn không có nước, khi $TiCl_4$ tác dụng với SO_3 trong dung mỗi SO_2Cl_2 (sunfuryl clorua) lỏng hoặc khi nấu chảy TiO_2 trong kali đisunfat:

$$TiCl_4 + 4SO_3 = Ti(SO_4)_2 + 2SO_2Cl_2$$

 $TiO_2 + 2K_2S_2O_7 = Ti(SO_4)_2 + 2K_2SO_4$

Hợp chất peoxi của Ti(IV)

Một phản ứng đặc trưng của muối ${\rm Ti}({\rm IV})$ với ${\rm H_2O_2}$ trong môi trường axit là tạo nên dung dịch có màu da cam.

Ví du:

$$TiOSO_4 + H_2O_2 + 2H_2O = H_4TiO_5 + H_2SO_4$$

Axit peoxititanic có cấu tạo phân tử:

Phản ứng tạo màu này dùng để nhận biết titan và hiđro peoxit. Một số ít hợp chất peoxi của Ti(IV) có thể tách ra ở dạng tinh thể là: $K_2[Ti(O_2)(SO_4)_2].3H_2O$, $K_2[Ti(O_2)_2F_2]$ và $K_3[Ti(O_2)F_5]$.

HỢP CHẤT CỦA TITAN VỚI SỐ OXI HÓA THẤP

Các hợp chất của titan với số oxi hóa thấp đều dễ chuyển thành hợp chất của titan(IV).

Hợp chất của Ti(II)

Titan(II) oxit (TiO) là chất dạng tinh thể màu vàng chói, có kiểu kiến trúc NaCl và là chất không hợp thức. Nó tác dụng với axit đặc giải phóng H_2 :

$$2\text{TiO} + 3\text{H}_2\text{SO}_4 = \text{Ti}_2(\text{SO}_4)_3 + \text{H}_2 + 2\text{H}_2\text{O}$$

 ${\rm Titan}({\rm II})$ oxit được tạo nên khi khử ${\rm TiO_2}$ bằng Mg, Ti hay ${\rm Cl_2}$ ở nhiệt độ cao và trong khí quyển trơ.

Ví dụ:

$$TiO_2$$
 + Ti = $2TiO$

Titan(II) hidroxit (Ti(OH)₂) là kết tủa màu đen, không tan trong nước nhưng tác dụng chậm với nước giải phóng H₂:

$$2Ti(OH)_2 + 2H_2O = 2Ti(OH)_3 + H_2$$

Titan(II) hidroxit được tạo nên khi muối của Ti(II) tác dụng với dung dịch kiềm.

Titan(II) halogenua (TiX2, ở đây X=Cl, Br và I). Các đihalogenua này là chất bột màu đen, khó nóng chảy và bền với nhiệt.

Titan(II) clorua tan ít trong nước nhưng tác dụng với nước giải phóng H_2 :

$$3\text{TiCl}_2$$
 + $3\text{H}_2\text{O}$ = 2TiCl_3 + H_2TiO_3 + 2H_2

Titan(II) clorua cũng dễ tác dụng với oxi không khí ở điều kiện thường:

$$TiCl_2 + O_2 = TiO_2 + Cl_2$$

nên cần phải bảo quản trong khí quyển H_2 hoặc CO_2 .

Các đihalogenua TiX_2 được tạo nên khi khử các tetrahalogenua TiX_4 bằng các chất khử khác nhau hoặc khi nhiệt phân trihalogenua TiX_3 .

Ví dụ:

$$TiCl4 + H2 = 700°C 2TiCl3 = TiCl2 + 2HCl 2TiCl3 = TiCl2 + TiCl4$$

Hợp chất của Ti(III)

Số hợp chất của $\mathrm{Ti}(\mathrm{III})$ có nhiều hơn so với $\mathrm{Ti}(\mathrm{II})$.

Titan(III) oxit (Ti_2O_3) là chất dạng tinh thể màu tím có kiến trúc tinh thể kiểu Al_2O_3 - α

rất khó nóng chảy, khó sôi và không tan trong nước. Khi đun nóng trong không khí hay khi đun sôi trong HNO_3 , nó biến thành Ti_2O .

Titan(III) oxit được tạo nên khi khử TiO $_2$ bằng C ở 870°C hoặc khử hỗn hợp TiO $_2$ và TiCl $_4$ bằng H $_2$ ở 1400°C:

$$3\text{TiO}_2$$
 + TiCl_4 + 2H_2 = $2\text{Ti}_2\text{O}_3$ + 4HCl_2

Titan(III) hidroxit (Ti(OH)₃ hay Ti₂O₃.nH₂O) là kết tủa màu tím-nâu không tan trong nước và có kiến trúc tương tự hiđroxit của kim loại hóa trị ba. Nó không tan trong dung dịch kiềm mà tan trong axit tạo thành muối Ti(III).

Nó có tính khử mạnh, dễ tác dụng với oxi không khí:

$$4\text{Ti}(OH)_3 + O_2 = 4H_2\text{Ti}O_3 + 2H_2O$$

Titan(III) hidroxit được tạo nên khi muối titan(III) tác dụng với dung dịch kiềm.

Titan(III) halogenua (TiX_3). Tất cả trihalogenua này đều là chất bột màu tím. TiF_3 bền nhất đối với nhiệt và không khí, còn các trihalogenua khác phân hủy ở nhiệt độ cao và có tính khử mạnh.

Trihalogenua thường gặp nhất là TiCl3.

Titan trihalogenua (TiCl₃) khan là chất bột màu tím, phân hủy ở 500° C tạo thành TiCl₂ và TiCl₄ và dễ tác dụng với không khí ẩm theo phản ứng:

$$4\text{TiCl}_3 + \text{O}_2 + 2\text{H}_2\text{O} = 4\text{TiOCl}_2 + 4\text{HCl}$$

Nếu không có mặt khí oxi, nó tác dụng chậm với nước giải phóng H_2 :

$$2\text{TiCl}_3$$
 + $4\text{H}_2\text{O}$ = 2TiO_2 + 6HCl + H_2

Khi tan trong nước có môi trường axit, ${\rm TiCl_3}$ cho dung dịch màu tím, màu của ion ${\rm [Ti(H_2O)_6]^{3+}}$.

Ion này có mặt trong tinh thể phèn titan $M \, \text{Ti}(SO_4)_2 . 12 H_2 O$ làm cho phèn có màu tím (M là ion kim loại kiểm và NH_4^+).

Hiđrat $TiCl_3.6H_2O$ kết tinh từ dung dịch của $TiCl_3$ trong môi trường axit. Hiđrat này cũng có ba dạng đồng phân giống như $CrCl_3.6H_2O$ là: $[Ti(H_2O)_6]Cl_3$ có màu tím, $[Ti(H_2O)_5Cl]Cl_2.H_2O$ có màu lục và $[Ti(H_2O)_4Cl_2]Cl.2H_2O$ cũng có màu lục.

Các TiX_3 khạn được điều chế bằng cách dùng các chất khử khác nhau để khử TiX_4 khi đun nóng. Ví dụ như $TiCl_3$ được điều chế bằng tác dụng của Ag với $TiCl_4$ ở ~200°C:

$$TiCl_4 + Ag = TiCl_3 + AgCl$$

Hidrat TiCl₃.6H₂O được điều chế bằng cách hòa tan kim loại trong dung dịch HCl đặc

hoặc dùng kẽm khử TiOCl₂ trong dung dịch HCl:

 2TiOCl_2 + 2n + 4HCl = 2TiCl_3 + 2nCl_2 + $2\text{H}_2\text{O}$

60 d.

CHƯƠNG IV

CÁC NGUYÊN TỐ NHÓM VB

Nhóm VB gồm các nguyên tố: vanađi(V), niobi(Nb) và tantan (Ta). Dưới đây là một số đặc điểm của các nguyên tố nhóm VB (Bảng 10).

Bảng 10 Một số đặc điểm của các nguyên tố nhóm VB

Nguyên tố (E)	Số thứ tự nguyên	Cấu hình electron nguyên tử		Năng l	Bán kính nguyên tử	Thế điện cực chuẩn,			
	tử		I,	12	I_3	I ₄	\mathbf{I}_{5}	Å	v
	 						<u>.</u>	<u> </u>	V ²⁺ /V
V	23	$[Ar]3d^34s^2$	6,74	14,1	26,31	48,35	68,70	1,34	-1,186
Nb	41	[Kr]4d ⁴ 5s ¹	6,88	14,32	25,04	37,70	51,90	1,46	-
Та	73	[Xe]4f ¹⁴ 5d ³ 6s ²	7,88	16,2	22,27	33,08		1,46	

Vanadi, niobi và tantan có cấu hình electron là (n-1)d^{3,4}ns^{1,2} và là kim loại chuyển tiếp. Nguyên tử vanadi và tantan có cấu hình electron giống nhau, riêng niobi có cấu hình electron hơi khác, một electron 5s nhảy vào điền obitan 4d. Điều này chứng tổ các obitan 4d và 5s có năng lượng gần giống nhau. Tuy nhiên sự khác nhau đó về cấu hình electron không có ảnh hưởng đến tính chất hóa học: niobi rất giống với tantan.

Năng lượng ion hóa của V, Nb và Ta cho thấy các kim loại có khả năng tạo nên những cation E^{2+} , E^{3+} và trong những hợp chất tương ứng, chúng có số oxi hóa ± 2 và ± 3 . Tuy nhiên số oxi hóa đặc trưng nhất trong các hợp chất của các nguyên tố nhóm này là ± 5 . Độ bền của trạng thái oxi hóa cao đó tăng lên từ V đến Ta. Chiều biến đổi này trái ngược với chiều biến đổi của trạng thái oxi hóa ± 5 trong nhóm As, Sb và Bi (nhóm VA).

Sự tăng từ trên xuống dưới độ bền của các hợp chất với số oxi hóa cao là đặc trưng cho các nguyên tố mà nguyên tử có vỏ bền 8 electron ở sát ngay lớp vỏ electron hóa trị. Khi bán kính nguyên tử tăng lên, hiệu ứng cực-hóa-thêm của vỏ 8 electron không biến đổi mấy nhưng giữ electron hóa trị yếu hơn cho nên electron hóa trị tạo liên kết cộng hóa trị với nguyên tố khác (ví dụ với O) dễ dàng hơn và liên kết cộng hóa trị sẽ bền hơn. Đó là nguyên nhân làm tăng độ bền của các hợp chất với số oxi hóa cao của nguyên tố, trong trường hợp này là hợp chất của V(V), Nb(V) và Ta(V). Trong khi trong các nguyên tố nhóm VA, từ trên xuống dưới có hiệu ứng cực-hóa-thêm tăng lên vì nguyên tử của nguyên tố có vỏ 18 electron dễ biến dạng ở ngay sát lớp vỏ electron hóa trị. Kết quả là độ bền của các hợp chất với số oxi hóa +5 giảm xuống từ As đến Bi.

Bán kính nguyên tử tăng lên từ V đến Nb nhưng không biến đổi từ Nb đến Ta do sự co lantanoit. Bởi vậy, Nb và Ta rất giống nhau về tính chất hóa học. Đây là cặp nguyên tố rất giống nhau sau cặp Zr-Hf đã xét ở chương trước, việc tách chúng ra khỏi nhau là công việc rất khó khān trong hóa học vô cơ.

Cả ba nguyên tố V, Nh và Ta đều có khả năng tạo nên những hợp chất peoxi và hợp chất có isopolianion và heteropolianion. Ở trạng thái oxi hóa thấp, Nh và Ta thường tạo nên hợp chất claste. Đây là kết quả của độ mạnh của liên kết kim loại—kim loại thể hiện ở nhiệt thăng hoa rất lớn của kim loại niobi và tantan. Chúng ta sẽ thấy điều này ở molipđen, vonfram và reni.

CÁC ĐƠN CHẤT

Tính chất lí học

Vanađi, niobi và tantan là những kim loại màu trắng, xám, rất khó nóng chảy và rất khó sôi. Tinh thể kim loại có mạng lưới lập phương tâm khối. Dưới đây là một số hằng số vật lí quan trọng của các kim loại (Bảng 11)

Bảng 11 Hàng số vật lí quan trọng của các kim loại V, Nb và Ta

Kim Ioại (E)	Nđnc, °C	Nds, °C	Nhiệt thăng hoa, kJ/mol		Độ cứng (thang Moxo)	Độ dẫn điện (Hg=1)
v	~1900	~3400	510	6,11	6	4
Nb	~2470	~44760	724	8,57	6	5
Ta	~3015	~5500	· 782	16,65	6.	6

8.00

Nhiệt độ nóng chảy, nhiệt độ sôi và nhiệt thăng hoa của ba kim loại đều rất cao và tăng lên từ V đến Ta. Những hằng số vật lí cao đó được giải thích bằng độ bền của liên kết kim loại trong tinh thể gây nên bởi số lớn electron d độc thân (mỗi nguyên tử có 4 electron) tham gia tạo thành liên kết cộng hóa trị. Một điều lạ là Nb và Ta có cấu hình electron và bán kính nguyên tử giống nhau nhưng nhiệt độ nóng chảy của chúng khác nhau rất nhiều. Có lẽ rằng những obitan 4f điền đủ electron đã làm thay đổi kiến trúc electron của nguyên tử các nguyên tố sau lantanoit. Kiến trúc thay đổi đó chắn điện tích hạt nhân kém hơn làm cho điện tích dương của hạt nhân tác dụng mạnh hơn lên lớp vỏ electron của những nguyên tử kề cạnh và làm tăng mức độ ion của liên kết. Đó là nguyên nhân làm tăng mạnh nhiệt độ nóng chảy và nhiệt độ sôi từ Nb đến Ta.

Cả ba kim loại khi tinh khiết có những tính chất cơ lí tốt nhưng khi chứa tạp chất (O, N, C, B, H...) trở nên dòn do tạo nên những hợp chất có thành phần biến đổi.

Cả ba kim loại tạo nên nhiều hợp kim với Fe, Cr, Ti, Mn, Mo, W, Zr, Al, C, B, N... Những kim loại V, Nb và Ta được dùng chủ yếu làm chất cho thêm vào các loại thép đặc biệt. Vanađi truyền cho thép tính dẻo dai và tính chịu va đập. Thép chứa V dùng để chế tạo ôtô, xe tăng. Khi được cho thêm vào thép, vanađi còn có vai trò loại trừ những tạp chất có hại ở trong thép như O, S, C và N. Khoảng 95% vanađi được sản xuất là dùng để chế hợp kim. Niobi và tantan tạo nên những hợp kim chịu nhiệt, siêu cứng và bền hóa học. Thép chứa Nb và Ta dùng để làm dụng cụ cắt gọt nhanh. Thép chứa Nb dùng làm tuôcbin khí và động cơ phản lực. Hợp kim chứa Nb dùng làm cuộn dây của nam châm siêu dẫn. Hợp kim gồm 90% Nb và 10% Ta dùng trong kĩ thuật phản lực và du hành vũ trụ (máy bay siêu âm, tên lửa và trạm du hành vũ trụ)

Tính chất hóa học

 \mathring{O} nhiệt độ thường, cả ba kim loại khá trơ về mặt hóa học, nhất là Nb và Ta. Nguyên nhân của tính trơ đó là Nb và Ta có màng oxit mỏng và bền bảo vệ bề mặt kim loại. Khi đun nóng, các kim loại tác dụng với oxi và flo tạo thành oxit E_2O_5 và florua EF_5 (E=V, Nb và Ta). \mathring{O} nhiệt độ cao, chúng tác dụng với clo, lưu huỳnh, nitơ, cacbon, silic, ... thường tạo nên một số hợp chất kiểu xâm nhập và có thành phần biến đổi giống như các nguyên tố nhóm IVB. Những cacbua NbC và TaC có độ cứng và nhiệt độ nóng chảy (3350°C và 3800°C tương ứng) không thua kém kim cương. \mathring{O} dạng bột, Nb và Ta tác dụng với hơi nước giải phóng H_2 .

Vanađi ở điều kiện thường chỉ tan trong dung dịch HF đặc tạo nênVF₃ và tan trong cường thủy tạo nênVCl₄, khi đun nóng trong HNO₃ tạo nên VO₂NO₃ và trong H₂SO₄ đặc tạo nên VOSO₄. Niobi và tantan chỉ tác dụng chậm với dung dịch HF và tan dễ trong hỗn hợp HF và HNO₃.

Ví dụ:

$$3Ta + 5HNO_3 + 21HF = 3H_2[TaF_7] + 5NO + 10H_2O$$

Cả ba kim loại tác dụng với kiềm nóng chảy khi có mặt chất oxi hóa:

$$4E + 12KOH + 5O_2 = 4K_3[EO_4] + 6H_2O$$

Tính trơ hóa học của Nb và Ta gây nên bởi màng oxit mỏng và bền bảo vệ bề mặt kim loại. Do khó nóng chảy và bền hóa học, Nb và Ta cũng như hợp kim của chúng được dùng để chế những bộ phận quan trọng nhất của các máy hóa. Sợi dây rất mảnh làm bằng tantan được dùng để nối dây chẳng và huyết quản trong cơ thể người.

Trạng thái thiên nhiên và phương pháp điều chế

Trong thiên nhiên, vanadi là nguyên tố tương đối phổ biến, phổ biến hơn Cu, Zn và Pb còn niobi và tantan là những nguyên tố hiếm. Trữ lượng của V trong vỏ Trái Đất là $6.10^{-3}\%$, của Nb là $2.10^{-4}\%$ và Ta là $2.10^{-5}\%$ tổng số nguyên tử. Cả ba đều là nguyên tố phân tán, không có mỏ lớn mà ở lẫn trong khoáng vật của các kim loại khác. Những khoáng vật riêng của vanađi là patronit (VS_{2-2,5}), sunvanit (Cu₃VS₄), alait (V₂O₃.H₂O) và vanađinit (Pb₅(VO₄)₃Cl). Những khoáng vật này đều hiểm có nên không phải là nguyên liệu để sản xuất kim loại vanađi. Niobi và tantan luôn luôn đồng hành với nhau. Khoáng vật quan trọng của chúng là niobattantalat ((Fe, Mn)(EO₃)₂), khoáng vật có nhiều tantan hơn được gọi là tantalit ((Fe, Mn)(TaO₃)₂) và có nhiều niobi hơn được gọi là columbit ((Fe, Mn)(NbO₃)₂). Niobi và tantan thường ở lẫn trong khoáng vật của kim loại đất hiểm.

Vanađi có kích thước nguyên tử gần với những nguyên tố phổ biến nhất như Fe, Ti và Mn, ion vanađat có kích thước gần với ion photphat. Sự giống nhau về kích thước đó dẫn đến sự thay thế Fe, Ti, Mn, P bằng V trong kiến trúc tinh thể của các khoáng vật tương ứng.

Năm 1830 nhà khoa học Thụy Điển Sefstrom (N.G. Sefstrom, 1787-1845) phát hiện được một nguyên tố mới trong quặng sắt. Có trữ lượng lớn và có các hợp chất với màu sắc khác nhau, nguyên tố đó được gọi là *vanadi*, lấy tên của nữ thần sắc đẹp *Vanadis* trong truyện thần thoại của xứ Scanđinavi. Đến năm 1867 nhà hóa học người Anh Roscoe (H.E. Roscoe, 1845-1927) mới điều chế được kim loại vanadi bằng tác dụng của khí H₂với vanadi clorua (VCl₃) khi dun nóng.

Năm 1801 nhà hóa học Hatset (C. Hatchet, 1765-1847, người Anh) phát hiện một nguyên tố mối trong mẫu khoáng vật lấy ở Bắc Mỹ. Từ khoáng vật đó tách được oxit của một kim loại. Kim loại đổ được gọi là columbi và khoáng vật được gọi là columbit để ghi nhớ tên Columbia là một bang của nước Mỹ. Năm 1802, nhà khoa học Ekebec (A.G. Ekeberg, 1767-1813, người Thụy Điển) nghiên cứu các khoáng vật ở Phần Lan phát hiện một nguyên tố mối gọi là tantan. Nguyên tố có tên gọi như vậy là vì hợp chất của nó trơ về mặt hóa học. Tantanlus là tên của một ông thần quá nhiều tham vọng nhưng không thỏa mãn được và suốt đời ôm hận vì bị các thần khác trừng phạt, giam vào vách đá. Một thời gian dài người ta coi columbi và tantan là một. Mãi đến năm 1844 nhà hóa học người Đức Rose (H. Rose, 1795-1864) phân tích khoáng vật columbit và chứng minh rằng columbi là hỗn hợp của tantan và một nguyên tố khác chưa biết có khối lượng riêng bé hơn tantan. Nguyên tố mới đó được gọi là niobi, lấy tên của Niobe là con gái của thần Tantalus. Nhiều công trình nghiên cứu sau đó khẳng định sự tồn tại

của hai nguyên tố niobi và tantan với lượng khác nhau trong columbit và tantalit. Năm 1865 nhà hóa học Thụy Điển Marinhac (J.G. Marignac, 1817-1894, đề ra phương pháp phân chia Nb và Ta dựa vào độ tan ít hơn trong dung dịch HF loãng của kali florotantalat so với kali floroniobat, phương pháp này đến nay vẫn còn được sử dụng. Năm 1907 Bonton (W.von Bolton) đã điều chế được các kim loại tinh khiết Nb và Ta khi dùng natri kim loại khử floroniobat và florotantalat.

Những nước khai thác nhiều khoáng vật của V là Nam Phi, Nga và Trung Quốc, các nước có nhiều mỏ quặng của Nb là Brazin và Canađa, các nước có nhiều mỏ quặng của Ta là Zaia và Nigieria.

Nguyên liệu để sản xuất vanađi kim loại là quặng sắt có chứa vanađi. Quặng sau khi đã tuyển được đưa vào lò cao để luyện gang chứa vanađi. Khi luyện thép từ gang chứa vanađi, thu được xỉ có chứa FeVO₄. Nung xỉ với NaCl khi có mặt oxi không khí ở 900°C:

$$4\text{FeVO}_4 + 4\text{NaCl} + \text{O}_2 = 4\text{NaVO}_3 + 2\text{Fe}_2\text{O}_3 + 2\text{Cl}_2$$

Chế hóa natri metavanađat (NaVO₃) với axit để chế V_2O_5 . Sản phẩm thu được khi chế hóa quặng khác cũng thường là V_2O_5 . Để có kim loại vanađi người ta dùng Al khử V_2O_5 . Vanađi kim loại rất tinh khiết được điều chế bằng cách nhiệt phân VI_2 theo phương pháp Aken-Đơ Bôe. Để có hợp kim ferovanađi (chứa dưới 30% V), người ta khử V_2O_5 hay vanađat bằng ferosilic:

$$2V_2O_5 + 5Si = 5SiO_2 + 4V$$

Niobi và tạntan kim loại được điều chế bằng cách dùng những kim loại natri, canxì khử pentaoxit, pentaclorua hay muối phức floro của niobi và tantan.

Ví du:

$$Nb_2O_5$$
 + 5Ca = 5CaO + 2Nb
 $K_2[TaF_7]$ + 5Na = 2KF + 5NaF + Ta

Tantan còn có thể điều chế bằng cách điện phân Ta_2O_5 trong $K_2[TaF_7]$ nóng chảy. Các kim loại Nb, Ta cũng được tinh chế theo phương pháp Aken-Đơ Bôe. Các hợp kim feroniobi, ferotantan cũng được sản xuất tương tự như ferovanađi.

Chế hóa quặng và tách riêng Nb và Ta

Quặng niobat-tantalat sau khi đã tuyển, được nấu chảy với kiềm hoặc cacbonat kim loại kiềm:

$$Fe(EO_3)_2 + 6NaOH = 2Na_3EO_4 + FeO + 3H_2O$$

 $Mn(EO_3)_2 + 6NaOH = 2Na_3EO_4 + MnO + 3H_2O$

Rửa sản phẩm với nước để hòa tan những hợp chất tan như silicat, aluminat, stanat,

vonframat (gây nên bởi các tạp chất có trong quặng) rồi chế hóa tiếp với axit loãng để hòa tan FeO và MnO và còn lại hidrat của các pentaoxit:

$$2Na_3EO_4 + 6HCl = E_2O_5 + 3H_2O + 6NaCl$$

Chế hóa các hiđrat với dung dịch của hỗn hợp HF và KF:

$$Nb_2O_5 + 4KF + 6HF = 2K_2[NbOF_5] + 3H_2O$$

 $Ta_2O_5 + 4KF + 10HF = 2K_2[TaF_7] + 5H_2O$

Dựa vào độ tan khác nhau, $K_2[NbOF_3]$ tan hơi nhiều hơn $K_2[TaF_7]$, người ta kết tinh phân đoạn để tách riêng hai muối này ra khỏi nhau.

Quặng các kim loại đất hiếm có chứa Nb và Ta, sau khi đã tuyển, được clo hóa khi có mặt than ở nhiệt độ cao. Những clorua dễ bay hơi của Ti(IV), Nb(V) và Ta(V) thoát ra ngoài còn những clorua không bay hơi của đất hiếm, kim loại kiểm thổ và kim loại kiểm ở lại trong khối nóng chảy. Chưng cất phân đoạn để tách riêng lấy NbCl₅ và TaCl₅. Để tăng khoảng chênh lệch của nhiệt độ sôi, người ta cho thêm POCl₃ vào và chưng cất phân đoạn hỗn hợp sản phẩm kết hợp NbCl₅.POCl₃ và TaCl₅.POCl₃ để tách riêng chúng.

Để tách riêng Nb và Ta người ta còn có thể chiết chọn lọc hỗn hợp florua bằng tribenzylamin hay cupferon trong clorofom hoặc dùng phương pháp trao đổi ion.

HỢP CHẤT CỦA V(II), Nb(II) VÀ Ta(II)

Sơ đồ oxi hóa-khử dưới đây cho thấy tương quan độ bền của các trạng thái oxi hóa khác nhau của V, Nb và Ta ở trong dung dịch nước

Sơ đồ cho thấy ở điều kiện chuẩn, trạng thái oxi hóa +4 là bền nhất đối với vanađi, hợp chất vanađi(V) có tính oxi hóa và hợp chất của V(III), V(II) và V(0) có tính khử.

Sơ đồ thế oxi hóa-khử của Nb và Ta đơn giản hơn nhiều so với vanađi. Trạng thái oxi hóa +5 của Nb và Ta là bền nhất.

Vanadi monooxit (VO) là chất có thành phần biến đổi VO_{0,85-1,25}. Tinh thể có mạng lưới kiểu NaCl, có màu xám đen, có ánh kim và dẫn điện. Nó tan ít trong nước, tan dễ trong axit

loãng tạo thành muối V(Π):

$$VO + 2H_3O^+ + 3H_2O = V(H_2O)_6^{2+}$$

Ion $V(H_2O)_6^{2+}$ có màu tím. Những hiđrat tinh thể như $VCl_2.6H_2O$, $VSO_4.7H_2O$ và $K_2SO_4.VSO_4.6H_2O$ cũng có màu tím. Khi chế hóa dung dịch của những muối này với kiềm, kết tủa $V(OH)_2$ màu nâu lắng xuống. Hiđroxit này là bazở rất yếu, dễ bị oxi không khí oxi hóa.

Vanađi monoxit được tạo nên khi dùng V, K hay H_2 khử các oxit V_2O_3 , VO_2 và V_2O_5 ở nhiệt độ cao.

Ví dụ:

$$2V_2O_3 + 2K = 4VO + K_2O_2$$

 $Vanadi\ halogenua\ (VX_2)$ là chất ở dạng tinh thể: VF_2 có màu lục nhạt, VCl_2 màu lục, VBr_2 màu nâu và VI_2 màu đỏ.

 $Vanadi\ diclorua\ (VCl_2)$ là chất dạng tinh thể màu lục, nóng chảy ở 1000° C và sôi ở 1377° C, tan dễ trong nước cho dung dịch màu tím. Trong dung dịch, nó tác dụng chậm với nước giải phóng H_2 , dung dịch màu tím biến thành màu lục của muối V(III):

$$2VCl_2 + 2H_2O = 2VOCl + 2HCl + H_2$$

Là chất khử mạnh, VCl₂ kết tủa được các kim loại Sn, Cu, Ag từ dung dịch muối:

$$VCl_2 + SnCl_2 + H_2O = Sn + VOCl_2 + 2HCl$$

 $VCl_2 + CuSO_4 + H_2O = Cu + VOCl_2 + H_2SO_4$

Ở nhiệt độ cao VCl₂ có thể khử được CO₂ thành CO:

$$3VCl_2 + 2CO_2 = 2VOCl + VCl_4 + 2CO$$

Vanađi(II) clorua được tạo nên khi khử VCl_4 hay VCl_3 bằng H_2 ở 750°C hoặc khi vanađi kim loại tác dụng với khí HCl ở 350°C.

Ví dụ:

$$VCl_4 + H_2 = VCl_2 + 2HCl$$

 $V + 2HCl = VCl_2 + H_2$

Số hợp chất của Nb(II) và Ta(II) có ít hơn nhiều so với V(II) và đều kém bền.

HOP CHẤT CỦA V(III), Nb(III), VÀ Ta(III)

Vanadi(III) oxit (V_2O_3) có thành phần biến đổi $VO_{1,60\cdot 1,80}$ là chất dạng tinh thể có mạng

lưới giống Al_2O_3 - α , nóng chảy ở 1967°C và sôi ở 3027°C. Ở trong không khí, nó tác dụng chậm với oxi tạo thành VO_3 . Nó không tan trong nước, tan để trong axit tạo nên muối V(III):

$$V_2O_3 + 6H_3O^+ + 3H_2O = 2V(H_2O)_6^{3+}$$

Ion $V(H_2O)_6^{3+}$ có màu lục. Những hiđrat tinh thể như $VCl_3.6H_2O$, $VI_3.6H_2O$ cũng có màu lục, tinh thể phèn $KV(SO_4)_2.12H_2O$ có màu tím, tan trong nước cho dung dịch màu lục. Khi chế hóa dung dịch muối V(III) với kiểm, kết tủa bông $V(OH)_3$ màu lục lắng xuống. Hiđroxit này là bazơ yếu, dễ bị oxi không khí oxi hóa.

Niobi(III) oxit (Nb_2O_3) là chất bột màu xanh đen, nóng chảy ở 1775°C, không tan trong axit (trừ HF) và cường thủy.

 \mathring{O} nhiệt độ cao, các oxit V_2O_3 và Nb_2O_3 được điều chế bằng cách dùng H_2 khử V_2O_5 và Nb_2O_5 ở nhiệt độ cao.

Ví du:

$$Nb_2O_5 + 2H_2 = Nb_2O_3 + 2H_2O$$

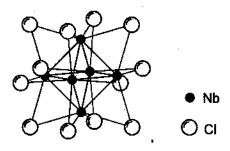
Vanađi trihalogenua (VX₃) là chất ở dạng tinh thể: VF₃ có màu vàng lục, VCl₃ màu tím đỏ, VBr₃ màu đen lục và VI₃ màu đen. Vanađi triflorua rất bền với nhiệt, nóng chảy ở 1127°C và sôi ở 1427°C còn các trihalogenua khác kém bền hơn nhiều, ví dụ như VCl₃ phân hủy ở 130°C theo phản ứng:

$$2VCl_3 = VCl_4 + VCl_2$$

Vanadi triclorua và vanadi triiodua tan trong nước (bị thủy phân) và các dung môi hữu cơ, các trihalogenua khác tan ít hơn nhiều.

Ion V^{3+} có khả năng tạo phức mạnh hơn ion V^{2+} . Người ta biết những phức chất của V^{3+} như $NH_4[V(SO_4)_2].6H_2O$ màu tím nhạt, $K_3[V(CN)_6].3H_2O$ màu đỏ, $K_4[V(CN)_7].2H_2O$ màu tím nhạt. Vanađi triflorua tạo nên với florua kim loại kiềm muối phức $M_3[VF_6]$, vanađi triclorua tạo nên với clorua kim loại kiềm các muối phức $M[VCl_4]$, $M_3[VCl_6]$, $M_3[V_2Cl_9]$ (ở đây M là kim loại kiềm).

Ví du:


$$2VCl_3 + 3KCl = K_3[V_2Cl_9]$$

Vanadi triflorua được tạo nên khi $V(OH)_3$ tác dụng với dung dịch HF, vanadi triclorua được tạo nên khi đun nóng VCl_4 trong khí quyển N_2 , còn vanadi tribromua và vanadi triiodua được tạo nên bằng tác dụng trực tiếp của các nguyên tố.

PHÚC CHẤT CLASTE CỦA N_b VÀ Ta

Một số halogenua của Nb và Ta với số oxi hóa thấp có thành phần không hợp thức: $NbF_{2,5}$, $NbI_{2,33}$, $NbCl_{2,67}$, $NbBr_{2,67}$, $NbI_{2,67}$, $TaCl_{2,5}$, $TaBr_{2,33}$, $TaBr_{2,5}$, $TaBr_{2,9}$, $TaBr_{3,1}$, $TaI_{2,33}$. Nhiều halogenua có cấu tạo *claste* (*cluster*, tiếng Anh là nhóm, cụm). Claste là ion hay phân tử chứa những cụm gồm 2 hay hơn 2 nguyên tử kim loại liên kết với nhau. Người ta biết được những hidrat có thành phần E_6X_{14} . $7H_2O$, trong đó E = Nb và Ta, X = Cl và Br. Chúng ta xét hợp chất khan E_6X_{14} .

Hợp chất clorua trước đây được xem là có công thức $NbCl_2$, về sau biết được công thức $là NbCl_{2,33}$ hay Nb_6Cl_{14} . Hợp chất này tan trong nước và rượu, khi tác dụng với muối Ag^+ chỉ có 1/7 số nguyên tử Cl được kết tủa dưới dạng AgCl. Mặt khác phương pháp nghiên cứu kiến trúc bằng tia Ronghen cho thấy trong dụng dịch rượu, hợp chất đó phân li tạo nên ion $[Nb_6Cl_{12}]^{2+}$ trơ về mặt động học. Hợp chất Nb_6Cl_{14} bao gồm những ion $[Nb_6Cl_{12}]^{2+}$ liên kết với nhau qua những cầu là ion Cl^- . Ion $[Nb_6Cl_{12}]^{2+}$ có cấu tạo:

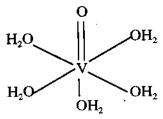
trong đó 6 nguyên tử Nb liên kết với nhau tạo thành một bát diện đều và ngoài ra hai nguyên tử Nb còn liên kết với nhau qua cầu nguyên tử Cl. Có lẽ những halogenua $EX_{2,3}$ có cấu tạo tương tự và những halogenua $EX_{2,5}$ cũng bao gồm những cụm E_6X_{12} liên kết với nhau qua cầu X^- nhưng bằng cách hơi khác.

HỢP CHẤT CỦA V(IV), Nb(IV) VÀ Ta(IV)

Dioxit EO₂

 $Vanadi \ dioxit \ (VO_2)$ có thành phần biến đổi $VO_{1,8-2,17}$ và có màu xanh chàm, $niobi \ dioxit \ (NbO_2)$ là bột màu xám và $tantan \ dioxit \ (TaO_2)$ là bột màu đen. Cả ba đioxit đều có kiến trúc kiểu rutin lệch được cấu tạo nên bởi các bát diện EO_6 nối với nhau qua đỉnh O chung. Các ion kim loại ở trong các bát diện NbO_6 và TaO_6 ở gần nhau hơn và oxit có độ từ cảm tương đối thấp nên trong NbO_2 và TaO_2 có liên kết kim loại – kim loại.

Các đioxit EO_2 đều khó nóng chảy và bền nhiệt. Khi đun nóng trong không khí, các đioxit bị oxi hóa thành E_2O_5 .


Trong khi ${\rm NbO_2}$ và ${\rm TaO_2}$ đều trơ với các dung dịch axit và kiềm, vanađi đioxit có tính lưỡng tính, tan trong axit và kiềm.

Khi tan trong dung dịch axit, VO2 tạo thành muối vanadyl.

Ví dụ:

$$VO_2 + 2HCl = VOCl_2 + H_2O$$

Trong dung dịch nước, ion vanađyl VO^{2+} ở dạng pentahiđrat $[VO(H_2O)_5]^{2+}$ màu xanh

trong đó liên kết V-OH₂ có độ dài 2,3Å còn liên kết V-O có độ dài 1,67Å và là liên kết đôi. Bởi vậy ion VO²⁺ có độ bền cao và không biến đổi trong các phản ứng hóa học. Ví dụ muối vanađyl tác dụng với kiểm tạo thành kết tủa hidroxit màu vàng có thành phần là VO(OH)₂. Người ta biết được ít muối của ion V⁴⁺ mà biết nhiều muối của ion VO²⁺: VOF₂ màu vàng, VOCl₂ màu lục, VOBr₂ màu vàng, VOSO₄ màu lục... Ion VO²⁺ cũng có khả năng tạo nên những phức chất bền như $[VOX_4]^{2-}$, $[VOX_4]^{3-}$ (trong đó X= F, Cl, CN, SCN,...), $[VO(C_2O_4)_2]^{2-}$...

Khi tan trong dung dịch kiểm, VO_2 tạo thành muối vanađit có màu nâu và thành phần cơ bản là $M_2V_4O_9$.

Ví dụ:

$$4VO_2 + 2KOH = K_2V_4O_9 + H_2O$$

Muối vanađit được tạo nên khi VO_2 tan trong kiềm nóng chảy có thành phần là M_2VO_3 và M_4VO_4 .

Các đioxit VO_2 , NbO_2 và TaO_2 được tạo nên khi khử các oxit E_2O_5 ở nhiệt độ cao.

Ví dụ:

$$V_2O_5 + H_2C_2O_4 = 2VO_2 + 2CO_2 + H_2O$$
 $Nb_2O_5 + H_2 = 2NbO_2 + H_2O$
 $Ta_2O_5 + C = 2TaO_2 + CO$

Tetrahalogenua EX4

Người ta biết được hầu hết tetrahalogenua của V, Nb và Ta trừ VBr₄, VI₄ và TaF₄. Chúng là chất rắn (trừ VCl₄ là chất lỏng dễ bay hơi như TiCl₄) và có màu sắc khác nhau. Các tetrahalogenua của Nb và Ta bền với nhiệt hơn, đa số có thể thăng hoa ở ~300°C.

Các tetrahalogenua EX4 dễ bị thủy phân.

Ví dụ:

$$VCl_4 + H_2O = VOCl_3 + 2HCl$$

Khi tác dụng với dung dịch nước, các tetrahalogenua của Nb và nhất là của Ta còn biến đổi trạng thái oxi hóa.

Ví du:

$$4\text{TaCl}_4 + 5\text{H}_2\text{O} = 2\text{TaCl}_3 + \text{Ta}_2\text{O}_5 + 10\text{HCl}$$

 $2\text{TaCl}_4 + 14\text{NaOH} = 2\text{Na}_3\text{TaO}_4 + 8\text{NaCl} + 6\text{H}_2\text{O} + \text{H}_3$

Vanadi tetraflorua (màu lục) được tạo nên khi VCl₄ tác dụng với axit flohiđric, vanadi tetraclorua (màu đỏ-nâu) được tổng hợp trực tiếp từ nguyên tố, niobi tetraclorua (màu tím-đen) và tantan tetraclorua (màu đen) được điều chế bằng cách dùng Al khử NbCl₅ và TaCl₅.

Ví dụ:

$$3NbCl_5 + Al = 3NbCl_4 + AlCl_3$$

HOP CHẤT CỦA V(V), Nb(V) và Ta(V)

Pentaoxit E₂O₅

Vanađi pentaoxit (V_2O_5), niobi pentaoxit (Nb_2O_5) và tantan pentaoxit (TaO_5) là chất dạng tinh thể khó nóng chảy, được cấu tạo nên bởi các nhóm bát diện EO_6 nối với nhau qua cạnh và đình chung. Tình thể V_2O_5 có màu đỏ da cam còn Nb_2O_5 và Ta_2O_5 , màu trắng. Dưới đây là nhiệt độ nóng chảy và năng lượng Gip tạo thành của các pentaoxit:

	V_2O_5	Nb_2O_5	Ta_2O_5
·Nđnc., °C	670	1490	1870
ΔG° _m , kJ/mol	-1427	-1776	-1908

Hai oxit Nb_2O_5 và Ta_2O_5 khá trợ về mặt hóa học, không tan trong nước, trong dung dịch axit và kiểm, chỉ tan trong kiểm nóng chảy tạo thành niobat và tantanat còn V_2O_5 tan ít trong nước (0,0079 g/l) cho dung dịch màu vàng nhạt có tính axit, tan dễ trong dung dịch kiểm, khi đun nóng lâu tan trong dung dịch axit.

Khi tan trong dung dịch kiềm, V_2O_5 tạo nên các vanađat có thành phần khác nhau:

$$V_2O_5$$
 + 6KOH = $2K_3VO_4$ + $3H_2O$
(kali orthovanađat)
 V_2O_5 + 4KOH = $K_4V_2O_7$ + $2H_2O$
(kali divanađat hay pirovanađat)
 $3V_2O_5$ + 6KOH = $2K_3V_3O_9$ + $3H_2O$
(kali trimetavanađat)

Khi tan trong dung dịch axit đặc, V_2O_5 tạo nên muối chứa cation đioxovanađi VO_2^+ , ví dụ như VO_2NO_3 , $(VO_2)_2SO_4$ và VO_2CIO_4 .

Cả ba pentaoxit đều bền với nhiệt. Ở nhiệt độ cao chúng bị H_2 , C, kim loại khử thành oxit thấp hay thành kim loại.

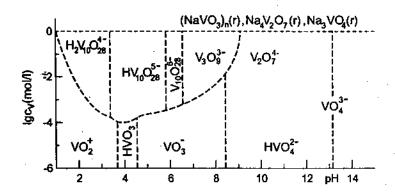
 \mathring{O} điều kiện thường, V_2O_5 thể hiện khả năng oxi hóa, tác dụng với dung dịch HCl đặc giải phóng khí Cl_2 , trong dung dịch H_2SO_4 tác dụng với khí SO_2 , với Zn:

$$V_2O_5 + H_2SO_4 + SO_2 = 2VOSO_4 + H_2O$$

 $V_2O_5 + 3H_2SO_4 + Zn = 2VOSO_4 + ZnSO_4 + 3H_2O$

Trong phản ứng thứ hai, Zn có thể khử tiếp $VOSO_4$ (màu xanh chàm) đến $V_2(SO_4)_3$ (màu lục) rồi khử $V_2(SO_4)_3$ đến VSO_4 (màu tím), trong khi đó Nb_2O_5 chỉ có thể bị khử đến muối của Nb^{3+} còn Ta_2O_5 không tác dụng. Như vậy, khả năng oxi hóa của các hợp chất của E(V) giảm xuống từ V đến Ta.

Các pentaoxit có thể điều chế bằng tác dụng trực tiếp từ nguyên tố hoặc bằng cách đun nóng các oxit thấp trong không khí. Oxit V_2O_5 dùng làm chất xúc tác trong sản xuất axit sunfuric và một số hợp chất hữu cơ, được điều chế bằng cách nhiệt phân muối amoni vanađat:


$$2NH_4VO_3 = V_2O_5 + 2NH_3 + H_2O$$

Vanađat, niobat và tantalat

Vanađat, niobat và tantalat của kim loại là những chất dạng tinh thể có thành phần và kiến trúc phức tạp. Những hợp chất có thành phần đơn giản hơn là MEO_3 , M_3EO_4 và M_4EO_7 (trong đó M là cation kim loại kiểm và NH_4^+). Đa số các vanađat, nhất là các niobat và tantalat, đều là chất ở dạng polime. Ví dụ như $NaNbO_3$ kết tinh theo kiểu peropskit (Hình 24) còn $Fe(NbO_3)_2$ và $Mn(TaO_3)_2$ có kiến trúc kiểu rutin (Hình 23).

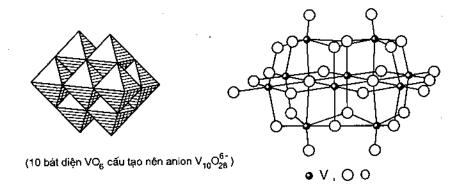
Vanadat. Đa số vanadat có màu, nhiều vanadat tan ít trong nước. Thành phân của vanadat trong dung dịch nước phụ thuộc vào nồng độ và pH của dung dịch. Sơ đồ vùng tồn tại của các dạng chất khác nhau của vanadat được biểu diễn một cách tương đối ở trên hình 25.

Hình 25. Sơ đồ thành phần dung dịch-pH của dung dịch vanadat trong nước

Khi nồng độ của vanadi trong dung dịch tăng lên, khuynh hướng tạo thành polivanadat tăng lên. Không tùy thuộc vào nồng độ của vanadi, trong dung dịch kiểm mạnh chỉ tồn tại ion orthovanadat VO_4^{3-} , trong dung dịch axit mạnh chỉ tồn tại ion VO_2^+ . Ở nồng độ tương đối lớn của vanadi, ví dụ C=0.1M sự tăng pH tạo nên các ion polivanadat khác nhau, ở nồng độ bế ví dụ $C=10^{-3}M$ vùng pH tạo nên các ion poli đó thu hẹp lại và ở nồng độ rất bế ($C<10^{-4}M$) những ion polivanadat không được tạo nên. Như vậy sự tăng pH của dung dịch dẫn đến sự chuyển hóa:

$$VO_2^+ \longrightarrow HVO_3 \longrightarrow VO_3^- \longrightarrow HVO_4^{2-} \longrightarrow VO_4^{3-}$$

Qua sơ đồ chúng ta thấy cân bằng:


$$H^+ + VO_3^- \iff HVO_3 \iff VO_2^+ + OH^-$$

chuyển dịch sang bên phải trong môi trường rất axit.

Ở một pH không đổi, sự thay đổi nồng độ của vanađi cũng làm biến đổi thành phần của dạng chất ở trong dung dịch. Ví dụ ở pH \sim 6, trong dung dịch tạo nên ion đecavanađat nhưng trong dung dịch loãng tạo nên ion VO_3^- .

Tùy theo pH và nồng độ của dung dịch vanađat, từ dung dịch nước có thể kết tinh những orthovanađat, pyrovanađat (hay còn gọi là đivanađat), trimetavanađat, tetrametavanađat và đecavanađat. Nhiều vanađat kết tinh ở dạng hiđrat tinh thể. Những hợp chất trimetavanađat, tetrametavanađat hay polimetavanađat đều là polime nhưng thường được biểu diễn bằng công thức đơn giản MVO_3 . Trong các metavanađat này, thường gặp hơn hết là amoni metavanađat (NH_4VO_3) vì là chất đầu để điều chế các hợp chất khác của vanađi. Anion đecavanađat $V_{10} O_{28}^{6-}$ được cấu tạo nên bởi các bát diện VO_6 nối với nhau qua các cạnh chung:

Các vanađat được tạo nên khi nấu chảy V_2O_5 trong kiểm hay cacbonat kim loại kiểm.

Divanadat được tạo nên khi kết tinh từ dung dịch nước được axit hóa của orthovanadat.

Ví du:

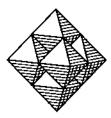
$$2K_3VO_4 + H_2SO_4 = K_4V_2O_7 + K_2SO_4 + H_2O_4$$

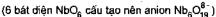
Amoni tetrametavanađat tan ít trong nước, được tạo nên khi muối amoni hay amoniac tác dụng với dung dịch vanađat.

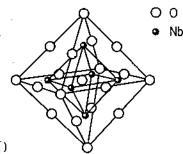
Ví du:

$$4K_3VO_4 + 4NH_4Cl + 4H_2O = (NH_4)_4V_4O_{12} + 4KCl + 8KOH$$

Niobat và tantalat. Các niobat và tantalat được tạo nên khi nấu chảy pentaoxit E_2O_5 trong kiểm hay cacbonat kim loại kiểm:


$$E_2O_5 + 3K_2CO_3 = 2K_3EO_4 + 3CO_2$$


Những niobat và tantalat tạo nên ở thể chảy như vậy được coi là những oxit hỗn hợp trong khi một số niobat và tantalat tan được trong nước có chứa những polianion riêng rẽ ví dụ như $H_2Nb_6\,O_{19}^{6-}$, $HNb_6\,O_{19}^{7-}$. Sản phẩm thu được khi nấu chảy Ta_2O_5 trong KOH khi tan trong nước tạo nên kali hexatantalat:


$$6K_3TaO_4 + 5H_2O = K_8Ta_6O_{19} + 10KOH$$

Trong hidrat tinh thể $K_8Ta_6O_{19}.16H_2O$ có mặt anion hexatantalat $Ta_6O_{19}^8$. Những polianion $Nb_6O_{19}^{8-}$ và $Ta_6O_{19}^8$ đều được cấu tạo nên bởi các bát diện EO_6 nối với nhau qua các cạnh chung:

Như vậy những hexaniobat và hexatantalat cũng như những oxit hỗn hợp kiểu $NaEO_3$ hay $Na_4E_2O_7$ đều được cấu tạo nên bởi các bát diện EO_6 mà E ở trung tâm của bát diện. Nhưng trong các muối hexa trên đây, các bát diện EO_6 được sắp xếp theo cách tạo nên những "bát diện lớn" bao gồm những nguyên tử Nb hay Ta làm cho trong tinh thể có mặt những polianion $E_6O_{19}^3$.

Khi axit hóa dung dịch nước hay huyền phù trong nước của niobat hay tantalat sẽ thu được kết tủa ít tan trong nước, tan dễ trong dung dịch HF và dung dịch kiềm. Đó là những hidrat của các pentaoxit Nb₂O₅.xH₂O, Ta₂O₅.yH₂O mà người ta thường gọi là *axit niobic* và *axit tantalic*.

Peoxivanađat, peoxiniobat và peoxitantalat

Rất đặc trưng đối với V, Nb và Ta là những hợp chất peoxi. Anion đipeoxivanađat $V(O_2)_2^{3-}$ có màu vàng, anion tetrapeoxivanađat $V(O_2)_4^{3-}$ có màu chàm tím, anion tetrapeoxiniobat $Nb(O_2)_4^{3-}$ và anion tetrapeoxitantalat $Ta(O_2)_4^{3-}$ đều không có màu.

Người ta tách được những hiđrat $KH_2VO_2(O_2)_2.H_2O$ và $(NH_4)_2HVO_2(O_2)_2.xH_2O$ từ dung dịch trung tính và hiđrat $M_3E(O_2)_4.mH_2O$ từ dung dịch kiềm mạnh. Ở trạng thái rắn những hợp chất peoxi này đều bền. Khi tác dụng với dung dịch axit, các peoxivanađat phân hủy còn các peoxiniobat và peoxitantalat chuyển thành peoxiaxit HEO_4 (hay $HEO_2(O_2)$).

Peoxivanadat, peoxiniobat và peoxitantalat được tạo nên khi các hợp chất của E(V) tác dung với dung dịch H_2O_2 .

Ví du:

$$K_3VO_4 + 2H_2O_2 = K_3VO_2(O_2)_2 + 2H_2O$$

 $E_2O_5 + 8H_2O_2 + 6KOH = 2K_3E(O_2)_4 + 11H_2O$

Pentahalogenua EX5

Ở điều kiện thường, trừ VF₅ là chất lỏng nhớt, các pentahalogenua còn lại là chất rắn. Tinh thể của các pentahalogenua đã biết đều có mạng lưới phân tử nên để nóng chảy, dễ sôi và dễ tan trong dung môi hữu cơ. Dưới đây là màu sắc, nhiệt độ sôi và nhiệt độ nóng chảy của các pentahalogenua đã biết:

Chất	VF ₅			
Màu sắc	không màu		·	
Ndnc., ⁰C	19,5	-	. -	
Nđs., ⁰C	48,3			
Chất	NbF ₅	NbCl ₅	NbBr ₅	NbI ₅
Màu sắc	trắng	vàng	da cam	nâu
Ndnc., ⁰C	79	203	254	-
Nds., °C	234	247	360	-
Chất	TaF ₅	TaCl ₅	TaBr₅	Tal ₅
Màu sắc	trắng	trắng	vàng nhạt *	đen
None, °C	97	210	280	496
Nds., ⁰C	229	233	345	543

Phân tử VF₅ có dạng hình chóp kép tam giác giống như phân tử SbF₅, phân tử của hai pentaflorua còn lại ở dạng tetrame $(EF_5)_4$ còn phân tử của các pentaclorua và pentabromua ở dạng đime $(EX_5)_2$:

Các pentahalogenua EX₅ đều hoạt động hóa học. Chúng có tính chất giống các halogenanhidrit, bị thủy phân để dàng tạo nên hidrat của các pentaoxit và axit halogenhidric:

$$2EX_5 + 5H_2O = E_2O_5 + 10HX$$

Với các oxitrihalogenua EOX3, phản ứng thủy phân cũng xảy ra tương tự:

$$2EOX_3 + 3H_2O = E_2O_5 + 6HX$$

Các pentaflorua của V, Nb và Ta, cắc pentaclorua của Nb và Ta có thể tác dụng với florua kim loại kiểm tạo nên những anion phức $[EF_6]^-$ (ở đây E=V, Nb và Ta), $[EF_7]^{2-}$ $[EF_8]^{3-}$ và $[ECl_6]^-$ (ở đây E=Nb và Ta).

Ví du:

$$KF + VF_5 = K[VF_6]$$

 $2KF + TaF_5 = K_2[TaF_7]$

Tương tự như vậy các oxitrihalogenua EOX_3 cũng tác dụng với halogenua kim loại kiểm tạo nên anion phức $[VOF_5]^{2^-}$, $[EOCl_4]^-$, $[EOX_5]^{2^-}$ và $[EOF_6]^{3^-}$ (ở đây E=Nb và Ta, X=F và Cl).

Ví du:

$$2KF + VOF_3 = K_2[VOF_5]$$

 $3KF + NbOF_3 = K_3[NbOF_6]$

Các pentahalogenua được tổng hợp trực tiếp từ các nguyên tố trừ TaI, được tạo nên khi chung cất TaBr, với HI. Ngoài ra còn có một số phương pháp điều chế khác.

Ví du:

$$NbCl_5 + 5HF = NbF_5 + 5HCl$$

 $Ta_2O_5 + 5PCl_5 = 2TaCl_5 + 5POCl_3$
 $Ta_2O_5 + 5Cl_2 + 5C = 2TaCl_5 + 5CO$

Khi các kim loại tác dụng với halogen nếu có mặt khí oxi thì ngoài pentahalogenua còn tao nên cả oxitrihalogenua nữa.

CHƯƠNG V

CÁC NGUYÊN TỐ NHÓM VIB

Nhóm VIB bao gồm các nguyên tố: crom (Cr), molipđen (Mo) và vonfram (W). Nguyên tố vonfram còn có tên gọi khác là tungsten. Dưới đây là một số đặc điểm của các nguyên tố nhóm VIB (bảng 12).

Bảng 12

Một số đặc điểm của các nguyên tố nhóm VIB

Nguyên tố (E)	Số thứ tự nguyên tử	Cấu hình electron	Năng lượng ion hóa, eV			Bán kính nguyên tử	Thế điện cực chuẩn, V
		nguyên tử	I,	I_2	I ₃	Å	E ³⁺ /E
Cr	24	[Ar]3d ⁵ 4s ¹	6,76	16,49	30,95	1,27	-0,74
Мо	42	[Kr]4d ⁵ 5s ¹	7,10	16,15	27,13	1,39	-0,2
W	74	$[Xe]4f^{14}5d^46s^2$	7,98	17,70	24,08	1,40	-0,15

Những nguyên tử Cr, Mo, và W có cấu hình electron khá giống nhau, những obitan d của Cr và Mo được điền đủ một nửa số electron cho nên tương đối bền.

Năng lượng ion hóa của Cr, Mo và W cho thấy trong những hợp chất với số oxi hóa lớn hơn +2, các nguyên tố ít có khả năng tạo nên liên kết ion.

Do sự co lantanoit, vonfram có bán kính nguyên tử gần với molipđen. Bởi vậy Mo và W, về tính chất, giống với nhau nhiều hơn so với Cr. Tuy nhiên, mức độ giống nhau trong cặp Mo–W kém hơn so với mức độ giống nhau trong các cặp Zr–Hf và Nb–Ta đã xét trước đây. Điều này được giải thích bằng sự giảm ảnh hưởng của hiện tượng co lantanoit đến kiến trúc electron của nguyên tử các nguyên tố khi đị từ nhóm IIIB đến nhóm IVB, VB và cuối cùng đến nhóm VIB. Một dẫn chứng cụ thể là Mo và W tuy giống nhau nhưng trong thiên nhiên không tồn tại chung với nhau nên việc tách riêng chúng ra khỏi nhau là không thành vấn đề như trong trường hợp của các cặp đã nói trên.

Crom có số oxi hóa đặc trung nhất là +3 và kém đặc trung hơn là +6, trong khi số oxi hóá đặc trung nhất của molipđen và nhất là của vonfram là +6. Ở trạng thái oxi hóa +6, các nguyên tố nhóm này giống với lưu huỳnh (nhóm VIA) ở cùng trạng thái oxi hóa đó. Ngoài ra trong các hợp chất, crom, molipđen và vonfram còn có các số oxi hóa 0, +1, +2, +3, +4 và +5.

Một đặc điểm nổi bật ở các nguyên tố nhóm này là khả năng tạo nên những anion của poliaxit.

CÁC ĐƠN CHẤT

Tính chất lí học

Crom, molipđen và vonfram là những kim loại màu trắng bạc có ánh kim. Dưới đây là những hằng số vật lí quan trọng nhất của chúng (bảng 13).

Bảng 13 Hằng số vật lí quan trọng của các kim loại Cr, Mo và W

Kim loại (E)	Nđnc., °C	Nđs., °C	Nhiệt thăng hoa, kJ/mol	Tỉ khối	Độ cứng (thang Moxơ)	Độ dẫn điện (Hg=1)
Cr	1875	2197	368,2	7,2	5	7,1
Мо	2610	5560	669,4	10,2	5,5	20,2
W	3410	5900	878,6	19,3	4,5	19,3

Cả ba kim loại đều nặng, dẫn điện và nhiệt tốt, rất khó nóng chảy và rất khó sôi. Về nhiệt độ nóng chảy, crom, molipđen và vonfram đứng đầu trong ba dãy kim loại chuyển tiếp. Những cực đại về nhiệt độ nóng chảy và nhiệt thăng hoa được giải thích bằng sự tăng độ bền của liên kết trong tinh thể kim loại chủ yếu bởi số liên kết cộng hóa trị được tạo nên từ số tối đa electron d độc thăn của các nguyên tử Cr, Mo, W. Theo lí thuyết hiện đại về liên kết kim loại, trong tinh thể kim loại mỗi nguyên tử thường chỉ có 1 hoặc 2 electron là electron dẫn, nghĩa là electron tự do, còn các electron hóa trị còn lại được ghép đôi với nhau tạo thành liên kết cộng hóa trị. Do khó nóng chảy nhất trong tất cả các kim loại, vonfram được dùng để làm sợi tóc bóng đèn điện, âm cực và đối âm cực của ống phát tia x; molipđen có nhiệt độ nóng chảy thấp hơn được dùng làm chân treo sợi tóc bóng đèn điện.

Crom, molipđen và vonfram rất tinh khiết đều dễ chế hóa cơ học nhưng khi lẫn những vết tạp chất thì trở nên cứng và giòn. Vì vậy các kim loại crom, molipđen và vonfram kĩ thuật (công nghiệp) đều cứng. Việc đưa Cr, Mo và W vào thép làm tăng cao độ cứng, độ bền nhiệt, độ bền ăn mòn và độ bền hóa chất của các loại thép đặc biệt. Thép dụng cụ chứa 3-4% Cr, thép

dụng cụ cất gọt chứa 20% W, thép crom - vonfram chứa 7,5% Cr, 26% W, 0,45-0,75 % C, thép không rỉ chứa 18 - 25% Cr; 6 - 10% Ni; 0,14% C; 0,8% Tì. Hợp kim nicrom dùng để làm dây xoắn đốt nóng trong các lò điện chứa 10% Cr, 25% Fe, 2% Mn và 63% Ni. Thép chứa 60% Cr và 5% Mo rất bền với axit. Hợp kim của Mo với W là vật liệu thay thế platin. Hợp kim của Al với W dùng để chế tạo động cơ ôtô và máy bay. Hợp kim siêu cứng stelit chứa 20-35% Cr, 35-55% Co, 9-15% W, 4-15% Fe, 2% C cứng gần bằng kim cương, được dùng làm dụng cụ cắt gọt tốc độ nhanh. Hợp kim chứa 90% W, 6% Ni và 4% Cu thường gọi là hợp kim nặng, có tỉ khối là ~18 được dùng để ngăn các tia phóng xạ (tốt hơn chì). Gần 90% lượng Mo và 85% lượng W sản xuất trong công nghiệp là dùng để chế các loại thép đặc biệt.

Một lượng rất bé của molipđen ở trong đất tạo điều kiện cho sự lớn lên và phát triển của cây và của vi khuẩn nốt sần. Molipđen cũng có trong các mô động vật, trong tế bào não của động vật có vú. Chức năng của molipđen ở trong động vật có liên quan với hoạt động của enzim xantinoxidazơ. Trong tế bào của vi khuẩn cố định nitơ, molipđen có trong những enzim gây nên sự liên kết với nitơ khí quyển.

Tính chất hóa học

Ở điều kiện thường, cả ba kim loại crom, molipđen và vonfram đều bền vững với không khí, hơi ẩm và khí cacbonic. Nguyên nhân là các kim loại được bảo vệ bởi màng oxit mỏng và bền ở trên bề mặt. Crom kim loại dạng tấm chỉ có thể cháy trong oxi ở 1800°C. Bởi vậy, người ta dùng crom mạ lên bề mặt các đồ bằng kim loại để bảo vệ cho kim loại không bị rỉ, lớp mạ đó thường chỉ dày vào khoảng 0,005 mm.

Ở nhiệt độ cao và nhất là ở dạng bột, cả ba kim loại tác dụng với oxi, crom tác dụng ở 300°C theo phản ứng:

$$4Cr(r) + 3O_2(k) = 2Cr_2O_3(r)$$
, $\Delta H^\circ = -1141 \text{ kJ/mol}$

còn molipđen và vonfram tác dung ở trên 600°C theo phản ứng:

$$2\text{Mo}(r) + 3O_2(k) = 2\text{MoO}_3(r)$$
, $\Delta H^\circ = -745 \text{ kJ/mol}$
 $2\text{W}(r) + 3O_2(k) = 2\text{WO}_3(r)$, $\Delta H^\circ = -842 \text{ kJ/mol}$

Khí flo tác dụng với ba kim loại ở điều kiện thường tạo thành các Florua CrF₄, CrF₅, MoF₆, WF₆, các halogen khác chỉ tác dụng khi đun nóng. Ở nhiệt độ cao, crom, molipđen và vonfram cũng tác dụng với các nguyên tố không - kim loại khác như N, C tạo thành các nitrua, cacbua thường là hợp chất kiểu xâm nhập có các thành phần khác nhau và có độ cứng rất lớn.

Ví dụ:

$$W + N_2 = WN_2$$

Những cacbua này truyền độ cứng cho những hợp kim siêu cứng. Cả ba kim loại không tác dụng với hiđro.

Ở nhiệt độ cao (600-800°C), crom, molipđen và vonfram tác dụng với nước giải phóng hiđro theo các phản ứng:

$$2Cr + 3H_2O = Cr_2O_3 + 3H_2$$

 $Mo + 2H_2O = MoO_2 + 2H_2$
 $W + 2H_2O = WO_2 + 2H_2$

Trong dãy thế điện cực, crom, molipđen và vonfram đứng trước hiđro nhưng molipđen và vonfram đứng rất gần hiđro. Crom có thể tan trong dung dịch loãng của HCl và $\rm H_2SO_4$, mới đầu phản ứng xảy ra chậm vì kim loại được màng oxit bên bảo vệ; khi đun nóng, màng oxit tan ra và crom tan để dàng giải phóng khí hiđro.

Ví dụ:

$$Cr + 2HCl = CrCl_2 + H_2$$
 , $E_{Cr^{2+}/Cr}^0 = -0.91V$

trong khi Mo và W không tác dụng với những dung dịch axit đó vì màng oxit bền của chúng. Crom và molipđen cũng bị dung dịch đặc và nguội của axit nitric và sunfuric thụ động hoá giống như nhôm và sắt. Muốn hoà tan nhanh các kim loại molipđen và vonfram người ta thường dùng hỗn hợp HNO₃ và HF.

Ví dụ:

$$W + 8HF + 2HNO_3 = H_2WF_8 + 2NO + 4H_2O$$

Cả ba kim loại không tan trong dung dịch kiểm nhưng tan trong hỗn hợp kiểm nóng chảy với nitrat hay clorat kim loại kiểm tạo thành cromat, molipđat và vonframat tương ứng.

Ví dụ:

$$Mo + Na_2CO_3 + 3NaNO_3 = Na_2MoO_4 + 3NaNO_2 + CO_2$$

Trạng thái thiên nhiên và phương pháp điều chế

Crom, molipđen và vonfram là những nguyên tố tương đối phổ biến trong thiên nhiên. Trong vỏ Quả Đất, crom chiếm $6.10^{-3}\%$, molipđen chiếm $3.10^{-4}\%$ và vonfram chiếm $6.10^{-4}\%$ tổng số nguyên tử. Khoáng vật chính của crom là sắt cromit [Fe(CrO₂)₂], của molipđen là molipđenit (MoS₂), của vonfram là silit (CaWO₄) và vonframit [(Fe,Mn)WO₄]. Những nước có

giàu mỏ quặng crom là Cazactan, Nam Phi, Ấn Độ, Thổ Nhĩ Kì và Zimbabuê. Những nước có giàu mỏ quặng molipđen và vonfram là Mỹ, Trung quốc, Nga, Chi Lê và Canađa. Nước ta có một mỏ sa khoáng cromit khá lớn ở Cổ Định Thanh Hoá, mỏ này đã được khai thác nhiều năm. Rải rác ở một số tỉnh miền Trung và miền Nam nước ta có các mạch quăng bé của Mo và W.

Crom lần đầu tiên được nhà bác học người Pháp Vôcơ anh (Louis Vauquelin, 1763-1829) điều chế vào năm 1797. Tên gọi *crom* (*chrome*) xuất phát từ tiếng Hi Lạp *chroma* có nghĩa là màu sắc vì các hợp chất của crom đều có màu.

Năm 1778 nhà hoá học Thụy Điển Silo (Carl Scheele, 1742-1786) chế hóa quặng molipđen tách được oxit MoO₃ và mãi đến năm 1790 nhà hóa học Thụy Điển khác là Ienmo (Hjelm) lần đầu tiên điều chế được molipđen kim loại khi dùng than gỗ khử MoO₃. Tên gọi molipđen (molyhdène) xuất phát từ tiếng Hi Lạp molihdos có nghĩa là chì vì khoáng vật molipđenit giống với khoáng vật galen của chì ở chỗ khi vạch lên nền trắng thì để lại vạch đen giống than chì.

Năm 1781, cũng nhà hóa học Silo đã tách được WO₃ từ khoáng vật silit của vonfram. Năm 1783 hai anh em nhà hóa học Tây Ban Nha Jose và Frosto (Jose và Frausto d' Elhuyar) đã tách được vonfram kim loại và xác định tính chất của nó. Thời Trung Cổ, các khoáng vật của vonfram được gọi là tungsten nghĩa là đá nặng. Trong thiên nhiên "đá nặng" thường ở lẫn với caxiterit. Khi khử caxiterit bằng than gỗ để luyện thiếc, "đá nặng" tạo thành lớp bọt nổi lên trên và hấp thụ một lượng thiếc làm giảm hiệu suất luyện thiếc cho nên các nhà luyện kim thời bấy giờ coi "đá nặng" là kẻ thù đối với thiếc giống như chó sói đối với cừu non. Tên gọi vonfram (wolfram) xuất phát từ tiếng La Tinh wolf có nghĩa là chó sói và rahm là bọt.

Crom kim loại được điều chế bằng phương pháp nhiệt nhôm, người ta dùng bột nhôm khử crom(III) oxit:

$$Cr_2O_3 + 2Ai = 2Cr + Al_2O_3$$

Crom thu được chứa 97,99% Cr và tạp chất sắt.

Molipđen và vonfram được điều chế bằng cách dùng khí hiđro khử MoO₃ và WO₃ ở trong lò điện:

$$MoO_3 + 3H_2 = Mo + 3H_2O$$

 $WO_3 + 3H_3 = W + 3H_2O$

Mo và W thu được ở dạng bột rất tinh khiết. Sản phẩm kim loại sẽ kém tinh khiết hơn khi thay H_2 bằng C hay Al. Nếu dùng H_2 khử các florua MoF_6 và WF_6 , kim loại thu được có độ tinh khiết còn cao hơn nữa. Vì là những kim loại khó nóng chảy nên người ta dùng phương pháp ép bột kim loại và thiêu kết trong khí quyển hiđro bằng đồng điện để tạo thành thỏi (phương pháp luyện kim bột) rồi từ thỏi kéo thành sợi hay cán thành lá.

Trong công nghiệp, lượng lớn kim loại crom, molipđen và vonfram được sản xuất từ quảng dưới dạng hợp kim fero. Hợp kim ferocrom chứa 50-70% Cr được sản xuất bằng cách

dùng than cốc khử quặng cromit:

$$Fe(CrO_2)_2 + 4C = Fe + 2Cr + 4CO$$

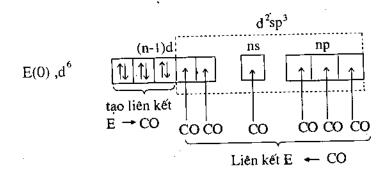
Hợp kim feromolipđen chứa 55-60% Mo được sản xuất bằng cách dùng Al hay C khử hỗn hợp quặng molipđen, oxit sắt và vôi ở trong lò điện.

Ví dụ:

$$2CaMoO_4 + Fe_2O_3 + 6AI + CaO = 2Fe + 2Mo + 3Ca(AlO_2)_2$$
.


Hợp kim ferovon fram chứa 65-70% W được sản xuất bằng cách dùng than cốc khử hỗn hợp von framat nghèo và oxit sắt ở $1700-1750^{\circ}$ C:

$$CaWO_4 + Fe_2O_3 + 6C = 2Fe + W + CaO + 6CO$$


HỢP CHẤT CỦA Cr(0), Mo(0) VÀ W(0)

Crom, molipden và vonfram hexacacbonyl

Những phân tử hecxacacbonyl Cr(CO)₆, Mo(CO)₆, W(CO)₆ có cấu hình bát diện đều với nguyên tử kim loại ở tâm và phân tử CO ở sáu đỉnh:

Phân tử hecxacacbonyl $E(CO)_6$ có tính nghịch từ, trong đó nguyên tử kim loại E (ở đây E = Cr, Mo và W) có cấu hình electron d⁶ và ở trạng thái lai hóa d²sp³:

Trong phân tử CO (xem tr. 71, Tập một), cặp electron trên obitan phân tử σ_z^{lk} với năng lượng cao hơn những cặp electron trên obitan phân tử π_x^{lk} và π_y^{lk} có khả năng tạo liên kết σ cho-nhận với obitan lai hóa d^2sp^3 trống của nguyên tử kim loại. Về hình thức, nguyên tử kim loại E có số oxi hóa bằng số không nhưng phương pháp nghiên cứu kiến trúc bằng tia Rơnghen chỉ ra rằng trong hecxacacbonyl $E(CO)_6$ nguyên tử kim loại E có một điện tích dương đáng kể, ví dụ như điện tích dương của Cr trong $Cr(CO)_6$ lớn hơn trong crom kim loại, trong Cr_2O_3 và cả trong $CrCl_3.6H_2O$. Như vậy ngoài liên kết σ -cho-nhận $E\leftarrow CO$, trong hecxacacbonyl còn có liên kết π -cho $E\rightarrow CO$ tạo nên bởi những cặp electron d của nguyên tử kim loại với những obitan phân tử π trống của phân tử CO và nhờ liên kết π này, các phân tử cacbonyl kim loại được làm bền thêm. Tương tác π -cho làm chuyển dịch mật độ electron về CO nhiều hơn so với sự chuyển dịch mật độ electron về kim loại M gây nên bởi tương tác σ cho-nhận và liên kết E-CO có những đặc tính cả cộng hóa trị và ion.

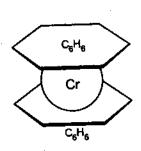
Sự tạo thành cacbonyl kim loại là tính chất đặc trưng của hầu hết kim loại chuyển tiếp, khác với kim loại không chuyển tiếp. Thành phần của hợp chất cacbonyl tuân theo quy tắc khí hiếm do nhà hóa học người Anh Situyc (N.V. Sidgwick, 1873-1952) đề ra. Theo quy tắc khí hiếm, nguyên tử kim loại trong cacbonyl kim loại có khuynh hướng nhận thêm một số electron của phân tử CO như thế nào để đạt được cấu hình electron bền của nguyên tử khí hiếm ở trong cùng chu kì. Để sáng tỏ, chúng ta xét quy tắc đó qua hecxacacbonyl trên đây và một số cacbonyl khác:

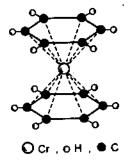
Cacbonyl		Số electron	Khí	Số thứ tự	
E(CO) _n	Của E	từ CO	tổng cộng	hiem	nguyên tử
Ti(CO) ₇	22	2 × 7	36	Kr	36
Cr(CO) ₆	24	2 × 6	36	Kr	36
Mo(CO) ₆	42	2 × 6	54	Xe	54
W(CO) ₆	74	2 × 6	86	Rn	86
Fe(CO) ₅	26	2 × 5	36	Kr	36
Ni(CO) ₄	28	2 × 4	36	Kr	36

Cacbonyl kim loại có rất nhiều. Chúng có những tính chất chung giống với hợp chất hữu cơ: tinh thể có mạng lưới phân tử, không tan trong nước nhưng dễ tan trong dung môi hữu cơ. Nhiều chất có áp suất hơi lớn nên dễ bay hơi. Khả năng phản ứng của cacbonyl kim loại cũng rất đa dạng, chúng tham gia những phản ứng thay thế CO bằng phối tử khác như PF₃, PCl₃, NO... và những phản ứng oxi hóa-khử.

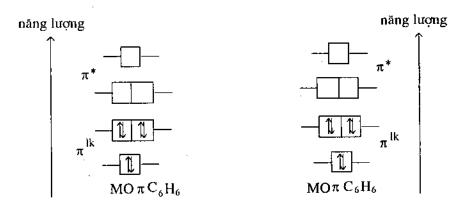
Ở điều kiện thường, crom, molipđen và vonfram hecxacacbonyl là chất ở dạng tinh thể không màu dễ thăng hoa trong chân không, Cr(CO)₆ nóng chảy trong chân không ở 149°C và phân hủy nổ ở 130-150°C, Mo(CO)₆ nóng chảy ở 148°C và sôi ở 155°C, W(CO)₆ nóng chảy ở 169°C và sôi ở 175°C.

Ở nhiệt độ cao hơn, chúng phân hủy thành kim loại và cacbon monooxit, người ta lợi dụng tính chất này để mạ crom, molipđen và vonfram lên những bề mặt phức tạp của các chi tiết máy móc và nhất là mạ lên bề mặt bên trong của ống kim loại.

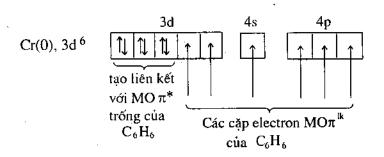

Các hecxacacbonyl này không tác dụng với nước và axit. Riêng Mo(CO)₆ tác dụng với axit axetic tạo thành molipđen (II) axetat. Chúng tác dụng với dung dịch NaOH trong rượu hay dung dịch Na trong amoniac lỏng tạo nên muối chứa anion cacbonylat, ví dụ như Na₂Cr(CO)₅, Na₂Mo(CO)₅ và Na₂W(CO)₅.


Cacbonyl kim loại thường được điều chế theo hai phương pháp: tác dụng trực tiếp từ kim loại và khí CO hay tác dụng của muối hoặc phức chất của kim loại với chất khử khi có mặt khí CO (áp suất). Những chất khử thường là nhôm, magie, natri, nhôm trietyl, nhôm trimetyl, khí H₂ hay cả khí CO.

Crom hecxacacbonyl được điều chế bằng tác dụng của dung dịch nhôm trietyl $Al(C_2H_5)_3$ trong ete với huyên phù $CrCl_3$ trong ete khi có mặt khí CO (áp suất cao). Molipđen hecxacacbonyl và vonfram hecxacacbonyl có thể điều chế bằng tác dụng trực tiếp của khí CO với bột kim loại ở áp suất cao (200-500 atm) khi có mặt sắt và đồng.


Crom dibenzen

Crom đibenzen $(Cr(C_6H_6)_2)$ là chất dạng tinh thể màu nâu, nóng chảy ở 284°C. Phân tử có dạng hình bánh kẹp (sandwich) với nguyên tử crom nằm giữa hai mặt phẳng song song của vòng benzen và các liên kết Cr-Cr có độ dài như nhau (Hình 26). Đây là hợp chất kiểu phức chất π cơ kim.


Hình 26. Cấu tạo của phân tử $Cr(C_6H_6)_2$

Hình 27. Giản đồ năng lượng các $MO\pi$ trong hai phân tử C_6H_6 riêng rẽ.

Như đã biết những obitan $2p_z$ của C có electron độc thân và vuông góc với mặt phẳng vòng benzen, theo thuyết MO, tổ hợp với nhau tạo thành ba $MO\pi^{lk}$ và ba $MO\pi^{lk}$: các $MO\pi^{lk}$ đã điền đủ electron còn các $MO\pi^{lk}$ đều trống (Hình 27):

Trong crom đibenzen, một phân tử nghịch từ, nguyên tử crom có cấu hình electron 3d6:

Liên kết hóa học giữa Cr và hai vòng benzen được thực hiện theo cơ chế σ -cho-nhận giữa các cặp electron trên $MO\pi^{lk}$ của hai vòng benzen với 6 obitan trống $(3d_{\chi^2-y^2})$, $3d_{z^2}$, 4s, $4p_x$, $4p_y$ và $4p_z$) của crom và theo cơ chế π -cho giữa ba cặp electron d của Cr với các $MO\pi^*$ trống của hai vòng benzen. Như vậy là có 18 electron (6 là của Cr và 12 là của C) ở trên 9 MO nhiều tâm và chuyển động trong trường của 13 hạt nhân nguyên tử (một nguyên tử crom và 12 nguyên tử C). Trong hợp chất này, quy tắc khí hiểm cũng được tuân theo: nguyên tử Cr có cấu hình electron của Kr (24+12=36).

Crom đibenzen đã được điều chế trước đây hơn nửa thế kỉ khi cho thuốc thử Grinha (C₆H₅MgBr) tác dụng với CrCl₃. Một phương pháp điều chế khác là tác dụng của CrCl₃ với benzen khi có mặt nhôm bột, nhôm khử crom(III) về crom(0) và tạo thành AlCl₃.

Cũng như các hecxacaebonyl của Cr, Mo và W, hợp chất crom đibenzen có ý nghĩa không chỉ về mặt lí thuyết mà cả về mặt thực tiễn.

Crom(II) oxit

Crom(II) oxit (CrO) là chất bột màu đen, có tính tự cháy, trên 100° C ở trong không khí biến thành Cr_2O_3 , trên 700° C ở trong chân không phân hủy thành Cr_2O_3 và crom. Có tính bazo, oxit này tan trong dung địch axit loãng. Ở 1000° C nó bị khí hiđro khử thành crom kim loại. Oxit này rất khó điều chế, được tạo nên khi dùng oxi không khí hay axit nitric oxi hóa hỗn hống crom.

Crom(II) hidroxit

Crom(II) hidroxit (Cr(OH)₂) là chất ở dạng kết tủa vàng nhưng rất thường lẫn tạp chất nên có màu hung. Nó không có tính lưỡng tính, tan trong dung dịch axit nhưng không tan trong dung dịch kiềm. Thể hiện tính khử mạnh hơn oxit, hidroxit dễ dàng tác dụng với oxi không khí tạo thành Cr(OH)₃. Khi đun nóng ở trong không khí nó phân hủy thành Cr₂O₃. Hidroxit này rất khó điều chế ở dạng tinh khiết, được tạo nên theo phản ứng:

$$CrCl_2 + 2NaOH = Cr(OH)_2 + 2NaCl$$

trong điều kiện không có mặt oxi không khí.

Muối crom(II)

Người ta đã tách ra được và nghiên cứu kĩ các muối crom(II) sau đây: $CrCl_2.4H_2O$, $CrBr_2.6H_2O$, $CrSO_4.H_2O$ (ít tan) và $[Cr(CH_3COO)_2.H_2O]_2$ (kết tửa). Các halogenua khan có nhiệt độ nóng chảy cao; CrF_2 màu xám, nóng chảy ở 1100°C, $CrCl_2$ màu trắng, nóng chảy ở 824°C, $CrBr_2$ màu trắng, nóng chảy ở 842°C và CrI_2 màu đỏ, nóng chảy ở 795°C. Các muối tan được trong nước cho ion hiđrat hóa $[Cr(H_2O)_6]^{2+}$ có màu xanh lam. Muối crom(II) ít bị thủy phân. Cũng như oxit và hiđroxit, muối crom(II) có tính khử mạnh, $E_{Cr}^{0.3+}/Cr^{2+} = -0.41$ V.

Ion Cr^{2+} có thể tạo nên những phức chất như $[Cr(NH_3)_6]Cl_2$, $K_4[Cr(CN)_6]$, $CrCl_2.2N_2H_4...$

Crom(II) clorua

Crom(II) clorua (CrCl₂) khan là chất bột màu trắng, hút ẩm mạnh, tan trong nước cho dung dịch màu xanh lam. Khi kết tinh từ dung dịch, thu được hiđrat CrCl₂.4H₂O là chất ở dạng tinh thể màu lục thẩm. Khi đun nóng trên 60°C, hiđrat mất bớt nước và đến 115°C biến thành muối khan CrCl₃.

Có tính khử mạnh, ngay trong dung dịch $CrCl_2$ dễ dàng tác dụng với oxi không khí biến dung dịch từ màu xanh lam thành màu lục của ion Cr^{3+} trong nước:

$$4CrCl_2 + O_2 + 4HCl = 4CrCl_3 + 2H_2O$$

Trong phân tích khí, người ta thường dùng dụng dịch nước của CrCl₂ để hấp thụ khí oxi.

Ngay khi không có mặt oxi không khí, ion Cr²⁺ phân hủy nước giải phóng khí hiđro và biến thành ion Cr³⁺:

$$2 \operatorname{CrCl}_2 + 2\operatorname{H}_2\operatorname{O} = 2\operatorname{Cr}(\operatorname{OH})\operatorname{Cl}_2 + \operatorname{H}_2$$

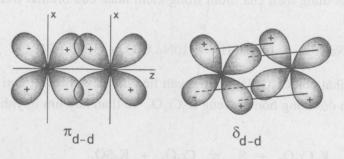
Muối khan CrCl₂ có thể điều chế bằng cách đun nóng crom kim loại ở 600-700°C trong dòng khí HCl hoặc đun nóng crom triclorua (CrCl₃) khan ở 400-540°C trong dòng khí hiđro:

$$Cr$$
 + $2HCl$ = $CrCl_2$ + H_2
 $2CrCl_3$ + H_2 = $2CrCl_2$ + $2HCl$

hoặc đun nóng cần thận để làm mất nước của hiđrat CrCl₂.4H₂O.

Dung dịch nước của muối crom(II) clorua được điều chế bằng cách dùng hiđro hoạt động khử dung dịch muối crom(III) clorua. Trong thực tế, người ta có thể dùng hỗn hống kẽm tác dụng với dung dịch CrCl₃ trong môi trường HCl:

$$2 \operatorname{CrCl}_3 + \operatorname{Zn} = 2 \operatorname{CrCl}_2 + \operatorname{ZnCl}_2$$


Crom(II) axetat

Crom(II) axetat là chất dạng kết tủa ít tan, có màu đỏ, được tạo nên khi cho dung dịch NaCH₃COO đặc tác dụng với dung dịch CrCl₂:

$$CrCl_2 + 2NaCH_3COO + H_2O = Cr(CH_3COO)_2.H_2O + 2NaCl$$

Đây là một trong những hợp chất dễ điều chế và bền nhất của Cr(II). Nó có cấu tạo đime [Cr(CH₃COO)₂.H₂O]₂, trong đó Cr ở trạng thái lai hóa d²sp³, những nhóm CH₃COO⁻ là cầu nối hai ion Cr²⁺ lại với nhau:

Tính nghịch từ của chất nói lên rằng 4 electron d ở mỗi ion Cr^{2+} đã được ghép đôi cộng với khoảng cách Cr-Cr (2,36Å) rất bé hơn khoảng cách Cr-Cr trong kim loại (2,49Å) chứng tỏ liên kết Cr-Cr đó là liên kết bốn: một liên kết σ , hai liên kết π và một liên kết δ . Hai ion Cr^{2+} dùng cặp obitan lai hóa d^2sp^3 tạo nên liên kết σ , cặp obitan $3d_{xz}$ và cặp obitan $3d_{yz}$ tạo nên hai liên kết π , còn cặp obitan $3d_{xy}$ tạo nên liên kết δ . Hình 28 trình bày sự che phủ của các cặp obitan 3d đó của crom.

Hình 28. Sự che phủ π và δ của các cặp obitan nguyên tử 3d

Đây là chất được biết đầu tiên (năm 1884) trong những hợp chất có liên kết bốn. Nó có ý nghĩa về lí thuyết nhiều hơn về mặt thực tiễn. Cấu tạo độc đáo của hợp chất làm cho nó có tính nghịch từ và có màu đỏ, một màu ít đặc trưng đối với nguyên tố crom. Màu đỏ của đime này chuyển nhanh thành màu lục khi để trong không khí ẩm vì crom(II) bị oxi hóa thành crom(III).

HOP CHẤT CỦA CROM(III)

Crom(III) oxit

Crom(III) oxit (Cr_2O_3) dạng tinh thể có màu đen ánh kim và có cấu tạo giống α - Al_2O_3 (corundum). Là hợp chất bền nhất của crom, nó nóng chảy ở 2265°C và sôi ở 3027°C. Có độ cứng tương đương corundum nên thường được dùng làm bột mài bóng kim loại. Dạng vô định hình là chất bột màu lục thẫm thường dùng làm bột màu cho sơn và thuốc vẽ.

Crom(III) oxit trơ về mặt hóa học nhất là sau khi đã nung nóng, nó không tan trong nước, dung dịch axit và dung dịch kiềm. Tính lưỡng tính của Cr_2O_3 chỉ thể hiện khi nấu chảy với kiềm hay kali hiđrosunfat:

$$Cr_2O_3 + 2KOH = 2KCrO_2 + H_2O$$
(kali cromit)

 $Cr_2O_3 + 6KHSO_4 = Cr_2(SO_4)_3 + 3K_2SO_4 + 3H_2O$

Phản ứng thứ hai xảy ra tương tự như vậy với $K_2S_2O_7$:

$$Cr_2O_3 + 3K_2S_2O_7 = Cr_2(SO_4)_3 + 3K_2SO_4$$

Khi nấu chảy với peoxit kim loại kiềm hoặc với hỗn hợp của kiềm và nitrat hay clorat kim loại kiềm, nó biến thành cromat:

$$Cr_2O_3 + 3Na_2O_2 = 2Na_2CrO_4 + Na_2O$$

 $Cr_2O_3 + 2Na_2CO_3 + 3NaNO_3 = 2Na_2CrO_4 + 3NaNO_2 + 2CO_2$
 $Cr_2O_3 + 4KOH + KClO_3 = 2K_2CrO_4 + KCl + 2H_2O$

Khi đun nóng với dung dịch của brom trong kiềm hoặc của bromat trong kiềm, nó tan và biến thành cromat:

$$5Cr_2O_3 + 6NaBrO_3 + 14NaOH = 10Na_2CrO_4 + 3Br_2 + 7H_2O$$

Công dụng lớn nhất của Cr_2O_3 là làm nguyên liệu để điều chế kim loại crom. Oxit đó được điều chế bằng cách đốt nóng hỗn hợp của $K_2Cr_2O_7$ và than hay lưu huỳnh trong nỗi bằng thép:

$$K_2Cr_2O_7 + S = Cr_2O_3 + K_2SO_4$$

Crom(III) hidroxit

Crom(III) hidroxit $(Cr(OH)_3)$ có cấu tạo và tính chất giống với nhôm hidroxit. Nó là kết tủa nhầy, màu lục nhạt, không tan trong nước và có thành phần biến đổi. Kết tủa đó là chất polime đa nhân có kiến trúc lớp, trong đó những phân tử H_2O và những nhóm OH^- phối trí xung quanh ion Cr^{3+} , và nhóm OH^- đồng thời là cầu nối giữa hai ion Cr^{3+} :

Khi để lâu hoặc đun nóng, hiđroxit này mất hoạt tính vì những liên kết Cr-OH-Cr được thay thế bởi những liên kết Cr-O-Cr.

Là hợp chất lưỡng tính điển hình, khi mới điều chế hiđroxit tan dễ dàng trong axit và dung dịch kiềm:

$$Cr(OH)_3 + 3H_3O^+ = [Cr(H_2O)_6]^{3+}$$

$$Cr(OH)_3 + OH^- + 2H_2O = [Cr(OH)_4(H_2O)_2]^-$$

Ion $[Cr(OH)_4(H_2O)_2]^-$ thường viết gọn là $[Cr(OH)_4]^-$, có thể kết hợp thêm ion OH^- tạo thành $[Cr(OH)_5]^{2-}$ và $[Cr(OH)_6]^{3-}$. Tất cả những ion này được gọi chung là hidroxocromit. Hidroxocromit có màu lục nhạt, kém bền hơn hidroxoaluminat, khi đun nóng trong dụng dịch đã phân hủy tạo thành kết tủa $Cr(OH)_3$. Sở dĩ như vậy là vì $Cr(OH)_3$ thể hiện tính axit yếu hơn $Al(OH)_3$, nó tan trong dụng dịch kiềm có pH = 11-12 trong khi $Al(OH)_3$ tan trong dụng dịch có pH = 9-10.

Crom(III) hidroxit tan không đáng kể trong dung dịch NH₃ nhưng tan dễ trong amoniac lỏng tạo thành phức chất hecxaammin:

$$Cr(OH)_3 + 6NH_3 = [Cr(NH_3)_6](OH)_3$$

Khi đun nóng, crom(III) hiđroxit dễ mất nước biến thành oxit.

Để điều chế crom(III) hiđroxit ở trong phòng thí nghiệm, người ta cho một trong các chất NaOH, KOH, NH₃, Na₂CO₃, Na₂S₂O₃... tác dụng với dung dịch muối crom(III). Phản ứng ion chung có thể được viết gọn là:

$$Cr^{3+} + 3OH^{-} = Cr(OH)_{3}$$

Muối crom(III)

Crom(III) là trạng thái oxi hóa bền nhất của crom. Người ta đã biết được nhiều muối crom(III), những muối này độc với người. Nhiều muối crom(III) cũng có cấu tạo và tính chất giống với muối nhôm(III) cho nên biết tính chất hóa học của nhôm(III) có thể suy đoán tính chất của hợp chất crom(III). Sự giống nhau này được giải thích bằng sự gần nhau về kích thước của các ion Cr^{3+} (0,57Å) và Al^{3+} (0,61Å). Muối crom(III) có độ tan gần với muối nhôm(III), đa số tan trong nước, những muối rất ít tan là $Cr_2(CO_3)_3$, $CrPO_4$ và $CsSO_4.Cr_2(SO_4)_3.24H_2O$ (phèn crom-xesi). Khi kết tinh từ dung dịch, muối crom(III) thường ở dạng tinh thể hiđrat có thành phần và màu sắc biến đổi, ví dụ như $CrPO_4.6H_2O$ có màu tím và $CrPO_4.2H_2O$ có màu lục.

Muối khan có cấu tạo và tính chất khác với muối dạng hiđrat, ví dụ như $CrCl_3$ màu tím-đỏ tan hết sức chậm trong nước và $Cr_2(SO_4)_3$ màu hồng tan rất ít trong nước, trong khi $CrCl_3.6H_2O$ và $Cr_2(SO_4).18H_2O$ đều có màu tím và dễ tan trong nước.

Dung dịch của muối crom(III) có màu tím-đỏ ở nhiệt độ thường nhưng có màu lục khi đun nóng. Màu tím của muối crom(III) trong dung dịch cũng như trong tinh thể hiđrat là màu đặc trưng của ion $[Cr(H_2O)_6]^{3+}$.

Muối crom(III) có tính thuận từ, rất bền trong không khí khô và bị thủy phân mạnh hơn muối crom(II). Phản cng thủy phân nấc thứ nhất của muối crom(III) có thể coi như phản ứng tạo thành phức chất hidroxo:

$$[Cr(H_2O)_6]^{3+} + H_2O \iff [Cr(OH)(H_2O)_5]^{2+} + H_3O^{+}$$

và xa hơn nữa là các phức chất có thể trùng hợp lại. Ví dụ như trong trường hợp của muối crom(III) sunfat, tùy thuộc vào nhiệt độ, pH và nồng độ của dung dịch có thể tạo nên những sản phẩm polime sau đây:

$$2[Cr(OH)(H_2O)_5]^{2+} + SO_4^{2-} = \begin{bmatrix} H_2O & H & OH_2 \\ H_2O & O & OH_2 \\ H_2O & O & OH_2 \end{bmatrix}^{2+} + 4 H_2O$$

$$2[Cr(OH)(H_2O)_5]^{2+} + 3 SO_4^{2-} = \begin{bmatrix} H_2O & OH_2 \\ H_2O & O & OH_2 \\ H_2O & O & OSO_3 \end{bmatrix}^{2+} + 6 H_2O$$

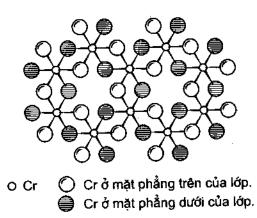
Do phản ứng thủy phân, những hợp chất Cr_2S_3 và $Cr_2(CO_3)_3$ không thể điều chế được bằng phản ứng trao đổi trong dung dịch vì trong nước luôn luôn tạo nên kết tủa $Cr(OH)_3$.

Trong môi trường axit, ion Cr^{3+} có thể bị khử đến Cr^{2+} bởi kẽm hay hỗn hống kẽm nhưng trong môi trường kiềm có thể bị H_2O_2 , PbO_2 , nước clo, nước brom oxi hóa đến cromat.

Ví dụ:

$$2CrCl_3 + 10KOH + 3H_2O_2 = 2K_2CrO_4 + 6KCl + 8H_2O$$

Có bán kính bé và điện tích lớn, ion Cr^{3+} là một trong những chất tạo phúc mạnh nhất, nó có thể tạo nên phức chất với hầu hết phối tử đã biết. Tuy nhiên, độ bền của các phức chất crom(III) biến đổi trong khoảng giới hạn rộng rãi tùy theo bản chất của phối tử và cấu hình của phức chất. Một số phức chất bền là $[Cr(NH_3)_6]^{3+}$, $[CrX_6]^{3-}(X$ là F^- , Cl^- , SCN^- , CN^-), $[Cr(C_2O_4)_2]^-$ và những phức chất vòng càng với axetylaxeton, với hiđroxi-8-quinolin chẳng hạn. Một phức chất thường gặp của crom là muối Reinecke $NH_4[Cr(SCN)_4(NH_3)_2].H_2O$ được dùng để kết tủa những cation lớn hữu cơ và vô cơ.


Muối crom(III) thường tạo nên muối kép giống như muối nhôm, một muối kép dùng

814.9°

để thuộc da và làm chất cấn màu khi nhuộm vải là phèn crom-kali $K_2SO_4.Cr_2(SO_4)_3.24H_2O$. Phèn crom đồng hình với phèn nhôm.

Crom(III) clorua

Crom(III) clorua (CrCl₃) hay crom triclorua là hợp chất crom(III) thông dụng và quan trọng nhất. Muối khan gồm những tinh thể hình vảy màu tím-đỏ, thăng hoa ở 1047°C và nóng chảy ở 1152°C. Tinh thể có kiến trúc lớp tương tự như khoáng vật hidragilit đã xét trước đây (Hình 44, Tập hai), mỗi lớp gồm hai mặt phẳng chứa những ion Cl⁻ gói ghém sít sao kiểu lập phương và gồm những ion Cr³⁺ chiếm hai phần ba số lỗ trống bát diện được tạo nên giữa hai mặt phẳng đó (Hình 29). Các lớp liên kết với nhau bằng lực Van đe Van nên tinh thể dễ bóc tách thành lớp.

Hình 29. Cấu tạo của một lớp tinh thể CrCl₃ tạo nên bằng các nhóm bát diện CrCl₆ nổi với nhau qua ba cạnh chung

Muối khan khó tan trong nước lạnh, tan chậm trong nước nóng nhưng tan rất nhanh khi có mặt ion Cr^{2+} . Điều này được giải thích là trong quá trình tan, ion Cr^{2+} ở trong dung dịch chuyển electron qua cầu nối clo đến ion Cr^{3+} nằm ở bề mặt tinh thể. Ion Cr^{2+} vừa được tạo nên đó rời bề mặt tinh thể và sẽ tiếp tục tương tác với ion Cr^{3+} mới nằm ở bề mặt tinh thể...

Từ dung dịch nước, muối crom(III) clorua kết tinh ở dạng hiđrat tinh thể CrCl₃.6H₂O. Hiđrat này có ba dang đồng phân khác nhau về cấu tạo, màu sắc và độ dẫn điện mol.

Hexaaquacrom(III) clorua $[Cr(H_2O)_6]Cl_3$ là những tinh thể màu tím-xanh, tan trong nước cho dung dịch màu tím, khó tan trong rượu, ete và axeton. Nó không mất nước khi sấy khô trên axit sunfuric đặc nhưng cả ba ion Cl^- đều tạo ngay kết tủa với ion Ag^+ .

Cloropentaaquacrom(III) clorua $[Cr(H_2O)_5Cl]Cl_2.H_2O$ là những tinh thể màu lục, hút ẩm mất một phân tử H_2O khi sấy trên axit sunfuric đặc và có hai ion Cl^- tạo ngay kết tủa với ion Ag^+ .

 ${\it Diclorotetraaquacrom(III)\ clorua\ [Cr(H_2O)_4Cl_2]Cl.2H_2O\ la\ những\ tinh\ thể\ màu\ lục}$

thẫm, hút ẩm mất hai phân tử H_2O khi sấy trên axit sunfuric đặc và có một ion Cl^- tạo ngay kết tủa với ion Ag^+ .

Trong dung dịch nước có cân bằng giữa ba dạng đồng phân của CrCl₃.6H₂O:

$$\begin{split} [Cr(H_2O)_6]Cl_3 & \iff [Cr(H_2O)_5Cl]Cl_2.H_2O \\ \text{(tim)} & \text{(luc nhạt)} \end{split}$$

Cân bằng này phụ thuộc vào nhiệt độ và nồng độ của dung dịch. Trong dung dịch loãng và nguội, dạng màu tím bên còn trong dung dịch đặc và nóng, dạng màu lục bên. Gần đây bằng phương pháp sắc kí trao đổi ion người ta đã tách được dạng đồng phân thứ tư có màu đỏ và công thức là $[Cr(H_2O)_3Cl_3].3H_2O$ nhưng chưa nghiên cứu nhiều như đối với ba dạng đồng phân đã kể ở trên.

Tinh thể hi
đrat $CrCl_3.6H_2O$ khi đun nóng trên 250°C ở trong khí quyển Cl_2 hay HCl sẽ mất hết nước biến thành muối khan.

Trong dung dịch, crom(III) clorua có thể kết hợp với clorua kim loại kiềm tạo nên phức chất màu đỏ-hồng.

Ví du:

$$CrCl_3 + 3KCl = K_3[CrCl_6]$$

Trong phòng thí nghiệm, $CrCl_3$ khan được điều chế bằng tác dụng trực tiếp của khí clo và crom kim loại ở 600°C hoặc tác dụng của khí clo với hỗn hợp của Cr_2O_3 và than ở 800°C hoặc tác dụng của CCl_4 với Cr_2O_3 ở 700-800°C:

$$2Cr + 3Cl_2 = 2CrCl_3$$

 $Cr_2O_3 + 3C + 3Cl_2 = 2CrCl_3 + 3CO$
 $2 Cr_2O_3 + 3CCl_4 = 4CrCl_3 + 3CO_2$

HỢP CHẤT CỦA CROM(VI)

Crom(VI) oxit

Crom(VI) oxit hay crom trioxit (CrO₃) là những tinh thể hình kim màu đỏ thẩm, hút ẩm mạnh và rất độc đối với người. Đây là chất polime (CrO₃) $_{\infty}$ có cấu tạo mạch thẳng tạo nên bởi những tứ diện CrO₄ nối với nhau qua hai nguyên tử O chung. Có mạng lưới phân tử, tinh thể CrO₃ nóng chảy ở nhiệt độ 197°C rất thấp hơn so với CrO và Cr₂O₃ là những hợp chất ion.

Khác với Cr_2O_3 , crom trioxit kém bên, ở trên nhiệt độ nóng chảy đã mất bớt oxi tạo nên một số oxit trung gian và đến 450°C biến thành Cr_2O_3 :

$$CrO_3 \xrightarrow{220^{\circ}C} Cr_3O_8 \xrightarrow{280^{\circ}C} Cr_2O_5 \xrightarrow{370^{\circ}C} CrO_2 \xrightarrow{450^{\circ}C} Cr_2O_3$$

Crom trioxit là chất oxi hóa rất mạnh, nó oxi hóa được I₂, S, P, C, CO, HBr, HI... và nhiều hợp chất hữu cơ; phản ứng thường gây nổ. Rượu etylic bốc cháy khi tiếp xúc với tinh thể CrO₃. Trong tổng hợp hữu cơ, người ta thường dùng dung dịch của CrO₃ trong axit axetic băng để làm chất oxi hóa.

Tuy nhiên, CrO₃ khô có thể kết hợp với các khí HF và HCl tạo nên cromyl florua (khí màu nâu-đỏ, ở 30°C ngưng tụ thành tinh thể màu tím-đỏ) và cromyl clorua (chất lỏng màu đỏ thẫm sôi ở 117°C biến thành hơi màu vàng) là những hợp chất có cấu tạo và tính chất tương tự sunfuryl halogenua đã xét trước đây (tr. 243 Tập hai).

Ví du:

$$CrO_3$$
 + 2HCl = CrO_2Cl_2 + H_2O (cromyl clorua)

Là anhiđrit axit, crom trioxit tan để dàng trong nước tạo thành dung dịch axit: dung dịch loãng có màu vàng chứa axit cromic (H_2CrO_4) và dung dịch đặc có màu từ đa cam đến đỏ chứa axit policromic (đicromic, tricromic, tetracromic):

$$CrO_3 + H_2O = H_2CrO_4$$

 $2CrO_3 + H_2O = H_2Cr_2O_7$
 $3CrO_3 + H_2O = H_2Cr_3O_{10}$
 $4CrO_3 + H_2O = H_2Cr_4O_{13}$

Bởi vậy, khi tác dụng với dung dịch kiềm nó có thể tạo nên các muối cromat, đicromat, tricromat...

Crom trioxit được tạo nên khi cho axit sunfuric đặc tác dụng với dung dịch bão hòa của cromat hay đicromat kim loại kiểm rồi để nguội để tinh thể tách ra.

Ví du:

$$K_2Cr_2O_7 + H_2SO_4 = 2 CrO_3 + K_2SO_4 + H_2O$$

Phòng thí nghiệm hóa học thường dùng $h\tilde{o}n$ hợp sunfocromic gồm hai thể tích bằng nhau của axit sunfuric đặc và dung dịch $K_2\mathrm{Cr}_2\mathrm{O}_7$ bão hòa để rửa sạch chất hữu cơ bám trên thành những dụng cụ thủy tinh như bình cầu, ống sinh hàn, cốc v.v... Công dụng rửa đó dựa vào khả năng oxi hóa mạnh của CrO_3 được tạo nên trong hỗn hợp.

Để tinh chế CrO₃ người ta kết tinh lại từ dung dịch nước và sấy khô ở 70°C.

Axit cromic và axit policromic

Dung dịch axit cromic (H_2CrO_4) có màu vàng, dung dịch axit đicromic $(H_2Cr_2O_7)$ có màu da cam, dung dịch axit tricromic $(H_2Cr_3O_{10})$ và axit tetracromic $(H_2Cr_4O_{13})$ có màu đỏ.

Tất cả những axit này chỉ tồn tại ở trong dung dịch. Muối của chúng bền hơn, có thể tách ra ở dạng tinh thể. Các axit và muối đều rất độc đối với người.

Axit cromic có độ mạnh trung bình, muối của nó được gọi là *cromat*. Muối cromat kim loại kiểm, amoni và magie tan nhiều trong nước cho dung dịch màu vàng, các muối cromat kim loại kiểm thổ và kim loại nặng đều ít tan, ít tan nhất là Ag_2CrO_4 (tinh thể màu đỏ), $BaCrO_4$ (tinh thể màu vàng) và $PbCrO_4$ (tinh thể màu vàng, tích số tan là $1.8.10^{-14}$).

Khi được axit hóa, dung dịch cromat biến thành đicromat, nếu được axit hóa mạnh hơn nữa dung dịch đậm đặc đicromat biến thành tricromat rồi tetracromat, nghĩa là quá trình ngưng tụ tăng lên khi giảm pH của dung dịch:

$$2 \operatorname{CrO}_{4}^{2-} + 2 \operatorname{H}^{+} = \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-} + \operatorname{H}_{2} \operatorname{O}$$

 $3 \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-} + 2 \operatorname{H}^{+} = 2 \operatorname{Cr}_{3} \operatorname{O}_{10}^{2-} + \operatorname{H}_{2} \operatorname{O}$

Khi được kiểm hóa, dung dịch policromat lần lượt biến ngược trở lại và sau cùng thành cromat.

Axit cromic là chất oxi hóa mạnh, oxi hóa được SO₂, H₂S. SnCl₂, FeSO₄, HCl v.v... trong đó crom(VI) biến thành crom(III).

Muối cromat bền trong môi trường kiềm nhưng oxi hóa mạnh trong môi trường axit:

$$2 \text{CrO}_4^{2-} + 16 \text{H}^+ + 6 \text{e} = 2 \text{Cr}^{3+} + 8 \text{H}_2 \text{O}$$
, $\text{E}^\circ = 1,33 \text{V}$
 $\text{CrO}_4^{2-} + 4 \text{H}_2 \text{O} + 3 \text{e} = \text{Cr}(\text{OH})_3 + 5 \text{OH}^-$, $\text{E}^\circ = -0,13 \text{V}$

Phương pháp chung để điều chế cromat là oxi hóa hợp chất crom(III) trong môi trường kiềm (dung dịch hoặc thể nóng chảy) hoặc tác dụng của CrO₃ với dung dịch kiềm.

Những muối cromat và đi
cromat thường gặp nhất là Na_2CrO_4 , K_2CrO_4 , $Na_2Cr_2O_7$,
 $K_2Cr_2O_7$ và $(NH_4)_2Cr_2O_7$.

Kali cromat
$$(K_2CrO_4)$$
 và kali dicromat $(K_2Cr_2O_7)$

Kali cromat là chất ở dạng những tinh thể tà phương màu vàng, đồng hình với K_2SO_4 và nóng chảy ở 968°C. Trong không khí ẩm, kali cromat không chảy rữa như Na_2CrO_4 , tan nhiều trong nước (63 g ở 20°C) cho dung dịch màu vàng (màu của ion CrO_4^{2-}), tan trong SO_2 lỏng, không tan trong rượu etylic và ete.

Khi tác dụng với axit, kali cromat biến thành đicromat rồi tricromat và tetracromat theo các phản ứng:

$$2 K_2 CrO_4 + H_2 SO_4 = K_2 Cr_2 O_7 + K_2 SO_4 + H_2 O_4$$

 $3 K_2 Cr_2 O_7 + H_2 SO_4 = 2 K_2 Cr_3 O_{10} + K_2 SO_4 + H_2 O_4$
 $4 K_2 Cr_3 O_{10} + H_2 SO_4 = 3 K_2 Cr_4 O_{13} + K_2 SO_4 + H_2 O_4$

Kali dicromat là chất ở dạng những tinh thể tam tà màu đỏ-da cam, nóng chảy ở 398°C và ở 500°C đã phân hủy:

$$4K_2Cr_2O_7 = 4K_2CrO_4 + 2Cr_2O_3 + 3O_2$$

Kali đicromat không chảy rữa trong không khí ẩm như natri đicromat, dễ tan trong nước cho dung dịch có màu đa cam (màu của ion $Cr_2O_7^{2-}$), có vị đắng, tan trong SO_2 lỏng và không tan trong rượu etylic. Muối này có độ tan thay đổi nhiều theo nhiệt độ (12,5 g ở 20°C và 100g ở 100°C) nên rất dễ kết tinh lại trong nước.

Kali đieromat tác dụng với dung dịch kiềm biến thành kali cromat, màu da cam của dung dịch trở thành màu vàng:

$$K_2Cr_2O_7 + 2KOH = 2K_2CrO_4 + H_2O$$

Sự dễ chuyển hóa lẫn nhau giữa muối cromat và đicromat được giải thích là ion CrO_4^{2-} dễ kết hợp với proton của axit tạo thành ion $HCrO_4^-$ rồi những ion này dễ trùng hợp biến thành ion $Cr_2O_7^{2-}$ và H_2O , các quá trình đều thuận nghịch:

$$2 \text{CrO}_4^{2-} + 2 \text{H}^+ \iff 2 \text{HCrO}_4^- \iff \text{Cr}_7 \text{O}_7^{2-} + \text{H}_2 \text{O}_7^-$$

Cân bằng này rất nhạy cảm với sự biến đổi pH của dung dịch: trong môi trường axit, cân bằng chuyển dịch về bên phải và trong môi trường kiềm, về bên trái. Tương tự như vậy, khi thêm lần lượt các dung dịch BaCl₂, Bi(NO₃)₃ và AgNO₃ vào dung dịch cromat hay đicromat kim loại kiềm, luôn luôn thu được những kết tủa BaCrO₄ (không được BaCr₂O₇ vì muối này tan nhiều hơn), (BiO)₂Cr₂O₇ (không được cromat vì muối này tan nhiều hơn), Ag₂CrO₄ và có thể cả Ag₂Cr₂O₇ (vì độ tan của hai muối này không khác nhau quá nhiều).

Cả hai muối K_2CrO_4 và $K_2Cr_2O_7$ đều có tính oxi hóa mạnh, nhất là trong môi trường axit chúng oxi hóa giống như axit cromic.

Ví dụ:

$$\begin{array}{rclcrcl} K_2 C r_2 O_7 & + & 14 H C I & = & 2 C r C I_3 & + & 2 K C I & + & 3 C I_2 & + & 7 H_2 O \\ K_2 C r_2 O_7 & + & 3 S O_2 & + & H_2 S O_4 & = & C r_2 (S O_4)_3 + & K_2 S O_4 & + & H_2 O \\ K_2 C r_2 O_7 & + & 6 F e S O_4 & + & 7 H_2 S O_4 & = & C r_2 (S O_4)_3 & + & 3 F e_2 (S O_4)_3 + & K_2 S O_4 + & 7 H_2 O \\ K_2 C r_2 O_7 & + & 3 S n C I_2 & + & 14 H C I & = & 2 C r C I_3 & + & 2 K C I & + & 3 S n C I_4 & + & 7 H_2 O \\ K_2 C r_2 O_7 & + & 3 C_2 H_5 O H & + & 4 H_2 S O_4 & = & C r_2 (S O_4)_3 & + & 3 C H_3 C H O + & K_2 S O_4 & + & 7 H_2 O \end{array}$$

Trong các phản ứng trên đây, màu da cam của dung dịch trở thành màu tím của ion Cr^{3+} trong nước. Bởi vậy, trong hóa học phân tích, $K_2Cr_2O_7$ thường được dùng làm chất oxi hóa để chuẩn độ các chất khử.

Khi oxi hóa trong môi trường trung tính, cromat thường tạo nên Cr(OH)₃:

$$2K_2CrO_4 + 3(NH_4)_2S + 2H_2O = 2Cr(OH)_3 + 3S + 6NH_3 + 4KOH$$

Sơ đồ thế oxi hóa - khử dưới đây cho thấy tương quan độ bền của các trạng thái oxi hóa của crom trong dung dịch nước:

$$\begin{array}{c} +0,294 \\ \hline \\ Cr_2O_7^{2-} & +1,33 \\ \hline \\ & -0.744 \\ \hline \end{array} \\ \begin{array}{c} Cr^{3+} & -0,408 \\ \hline & -0.744 \\ \hline \end{array} \\ \begin{array}{c} Cr^{2+} & -0.913 \\ \hline & -0.744 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -0.744 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -0.72 \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ & -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \\ \end{array} \\ \begin{array}{c} Cr \\ \hline \\ \end{array} \\ \begin{array}{c} Cr \\ \hline \\ \end{array} \\ \begin{array}{c} -1,34 \\ \hline \\ \end{array} \\ \begin{array}{c} Cr \\ \hline \\ \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \hline \end{array} \\ \begin{array}{c} -1,34 \\ \hline \end{array} \\ \begin{array}{c} Cr \\ \end{array} \\ \begin{array}{c} Cr$$

Ở trạng thái rắn, kali cromat và kali đicromat có thể oxi hóa S, P, C khi đun nóng.

Ví dụ⊁

$$K_2Cr_2O_2 + 2C = K_2CO_3 + Cr_2O_3 + CO$$

Bởi vậy, $K_2Cr_2O_7$ được dùng làm một thành phần của thuốc đầu diễm và nguyên liệu để sản xuất Cr_2O_3 . Ngoài những công dụng trên, $K_2Cr_2O_7$ còn được dùng để thuộc da và điều chế một số hợp chất của crom.

Kali đicromat có thể điều chế từ quặng cromit qua một quy trình chuyển hóa như sau:

Trong giai đoạn một, dùng không khí oxi hóa hỗn hợp đã nghiền mịn của cromit, sođa và đá vôi được nung nóng trong lò quay ở nhiệt độ 1000-1300°C:

$$4Fe(CrO_3)_2 + 8Na_2CO_3 + 7O_2 = 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2$$

Đá vôi ở đây có vai trò làm cho hỗn hợp phản ứng trở nên xốp để có thể tiếp xúc nhiều với oxi không khí.

Trong giai đoạn hai, hòa tan hỗn hợp sản phẩm phản ứng để có dung dịch $\rm Na_2CrO_4$ rồi axit hóa để chuyển cromat thành đicromat:

$$2Na_{2}CrO_{4} + 2H_{2}SO_{4} = Na_{2}Cr_{2}O_{7} + 2NaHSO_{4} + H_{2}O$$

Trong giai đoạn ba, chuyển $Na_2Cr_2O_7$ thành $K_2Cr_2O_7$ là muối ít tan hơn ở nhiệt độ thường, bằng phản ứng trao đổi:

$$Na_2Cr_2O_7 + 2KCl = K_2Cr_2O_7 + 2NaCl$$

Kali cromat cũng có thể điều chế trực tiếp từ quặng cromit khi thay sođa dùng trong giai đoạn một bằng K_2CO_3 là muối đất tiền hơn sođa hoặc có thể điều chế bằng tác dụng của kali hidroxit với kali đicromat.

HỢP CHẤT PEOXI CỦA CROM

Crom(VI) peoxit (CrO₅)

Khi chế hóa dung dịch cromat kim loại kiềm với dung dịch ete của hỗn hợp $\rm H_2O_2$ 30% và $\rm H_2SO_4$ loãng người ta thu được dung dịch màu xanh chứa $\rm CrO_5$ tạo nên theo phản ứng:

$$H_2CrO_4 + 2H_2O_2 = CrO_5 + 3H_2O$$

Peoxit này chỉ tồn tại trong dung dịch ete, không tách ra được ở dạng tự do và có công thức cấu tạo:

trong đó Cr có hóa trị sáu.

Crom peoxit kém bền, phân hủy dễ dàng giải phóng oxi khi tác dụng với các dung dịch axit, kiềm và KMnO₄.

$$CrO_5 + 2KOH = K_2CrO_4 + H_2O + O_2$$

 $4CrO_5 + 6H_2SO_4 = 2Cr_2(SO_4)_3 + 6H_2O + 7O_2$
 $4KMnO_4 + 5CrO_5 + 6H_2SO_4 = 5H_2CrO_4 + 2K_2SO_4 + 4MnSO_4 + H_2O + 10O_2$

Peoxicromat(VI)

Khi chế hóa cẩn thận dung dịch CrO_5 trong ete với H_2O_2 và dung dịch KOH (hay NH_3) hoặc chế hoá dung dịch $K_2Cr_2O_7$ (hay $(NH_4)_2Cr_2O_7$) ở $0^{\circ}C$ với dung dịch H_2O_2 30% người ta thu được hiđrat tinh thể màu xanh $K_2Cr_2O_{12}.2H_2O$ (hay $(NH_4)_2Cr_2O_{12}.2H_2O$ màu tím). Những peoxicromat đó được coi là muối của axit $H_2Cr_2O_{12}$ không tách ra được ở trạng thái tự do và có công thực cấu tạo:

Những peoxicromat đó đều không bền, phân hủy nổ khi va chạm, tan trong nước và rượu và phân hủy giải phóng oxi trong dung dịch nước, dung dịch kiểm và dung dịch axit:

$$2K_2Cr_2O_{12}$$
 = $2K_2Cr_2O_2$ + $5O_2$

$$2K_2Cr_2O_{12} + 4KOH = 4K_2CrO_4 + 2H_2O + 5O_2$$

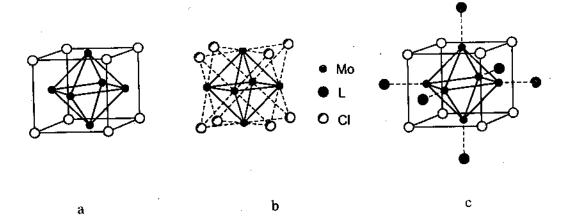
 $K_2Cr_2O_{12} + 4H_2SO_4 = Cr_2(SO_4)_3 + K_2SO_4 + 4H_2O + 4O_2$

Peoxicromat(V)

Khi cho dung dịch $\rm H_2O_2$ 30% tác dụng với hỗn hợp $\rm CrO_3$ và KOH ở 0°C hay với dung dịch $\rm K_2CrO_4$ có dư KOH người ta thu được những tinh thể $\rm K_3CrO_8$ màu đỏ-nâu là muối của axit $\rm H_3CrO_8$ không tách ra ở trạng thái tự do và có công thức cấu tạo:

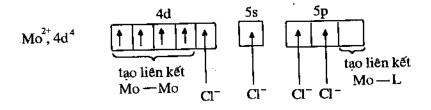
trong đó crom có hóa trị năm.

Tinh thể K_3 CrO₈ bền trong không khí khô ráo, chỉ phân huỷ nổ ở 178°C nhưng bị nước phân hủy ở nhiệt độ thường:


$$4K_3CrO_8 + 2H_2O = 4K_2CrO_4 + 4KOH + 7O_2$$

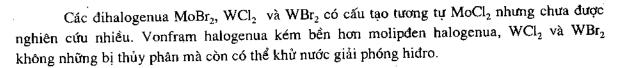
HOP CHẤT CỦA Mo(II) và W(II)

Molipđen và vonfram tạo nên tương đối nhiều hợp chất rất đa dạng với tất cả các số oxi hóa từ 0 đến +6. Bởi vậy, trong các kim loại chuyển tiếp có lẽ rằng hóa học của Mo và W là phúc tạp hơn hết.


Molipđen và vonfram đihalogenua

Trạng thái oxi hóa +2 thể hiện tương đối rộng rãi ở Cr lại hầu như không thể hiện ở Mo và W. Tuy người ta đã biết những đihalogenua của molipđen và vonfram như MoCl₂ (tinh thể màu vàng, thăng hoa trong chân không), WCl₂ (tinh thể màu xám, thăng hoa trong chân không), MoBr₂ (bột màu da cam, khó nóng chảy), WBr₂ (bột màu vàng-lục),... nhưng chúng là những polime có cấu tạo *claste* (*cluster*, tiếng Anh nghĩa là cụm, nhóm). Một trong những claste đã được nghiên cứu nhiều nhất là molipđen điclorua có công thức biểu diễn thành phần là MoCl₂. Phương pháp phân tích kiến trúc bằng tia Ronghen cho thấy trong điclorua đó không có ion đơn Mo²⁺ mà có ion phức [Mo₆Cl₈]⁴⁺, nghĩa là molipđen điclorua với công thức nguyên Mo₆Cl₁₂ là phức chất claste có công thức cấu tạo [Mo₆Cl₈]Cl₄. Thật vậy khi cho MoCl₂ tác dụng với dung dịch AgNO₃ chỉ có 4 trong 12 Cl tạo kết tủa AgCl. Ion phức [Mo₆Cl₈]⁴⁺ có tính nghịch từ, trong đó 6 nguyên tử Mo nằm ở tâm các mặt của hình lập phương và 8 nguyên tử Cl nằm ở các đỉnh của hình lập phương (Hình 30a).

Hình 30. Kiến trúc lập phương của $[Mo_6Cl_8]^{4+}$ (a) Liên kết trong $[Mo_6Cl_8]^{4+}$ (b) Kiến trúc của $[Mo_6Cl_8Cl_6]^{2-}$ (c)


Người ta có thể mô tả định tính sự tạo thành các liên kết trong ion phức $[Mo_6Cl_8]^{4+}$ từ những ion Mo^{2+} và Cl^- như sau: ion Mo^{2+} có cấu hình electron $4d^4$, mỗi ion liên kết cộng hóa trị Mo-Mo với 4 ion bên cạnh và tạo thành claste bát diện Mo_6 , bốn obitan tự do ở mỗi ion Mo^{2+} nhận cặp electron tự do của ion Cl^- tạo nên những liên kết cho-nhận $Cl \rightarrow Mo$:

Hình 30b trình bày các liên kết trong ion $[Mo_6Cl_8]^{4+}$. Ion phức claste $[Mo_6Cl_8]^{4+}$ bền và có thể không biến đổi trong các hợp chất khác nhau. Ví dụ như $MoCl_2$ tác dụng với dung dịch kiềm tạo nên $[Mo_6Cl_8](OH)_4$ và hiđroxit này tác dụng với dung dịch axit tạo nên muối chứa ion phức claste đó. Ngoài ra ion $[Mo_6Cl_8]^{4+}$ có thể được phối trí bởi sáu phối tử (kí hiệu là L) ở 6 nguyên tử Mo tạo thành ion phức chất $[Mo_6Cl_8L_6]^{2-}$ (Hình 30c), ví dụ như những dẫn xuất chứa ion $[(Mo_6Cl_8)Cl_6]^{2-}$, hợp chất $[(Mo_6Cl_8)(OH)_4(H_2O)_2].12H_2O$ v.v... Những phức chất khác ví dụ như $(Mo_6Cl_8)Cl_4.2C_5H_5N$, $(Mo_6Cl_8)Br_4.6H_2O$, $(Mo_6Cl_8)I_4.6H_2O$ có lẽ cũng có cấu tạo tương tự như vày.

Molipđen diclorua không tan trong nước nhưng tan trong rượu, ete và một số dung môi hữu cơ. Nó được tạo nên khi đun nóng kim loại molipđen trong hơi photgen:

$$6Mo + 6COCl_2 = [Mo_6Cl_8]Cl_4 + 6CO$$

Molipden(II) axetat

Molip den(II) axetat là chất dạng tinh thể hình kim màu vàng. Đây là hợp chất rất bền nhiệt, thăng hoa ở trên 300° C, mặc dù trạng thái oxi hóa +2 là không đặc trưng của Mo. Nó là đime $[Mo(CH_3COO)_2]_2$ có cấu tạo giống những đime tương ứng của Cr, Cu và Rh, trong đó độ dài của liên kết Mo-Mo được rút ngắn nhiều nhất (2,01Å) chứng tỏ liên kết có độ bội lớn giống như liên kết Re-Re trong $[Re_2Cl_8]^{2-}$ và liên kết Cr-Cr trong crom(II) axetat. Chính tính chất kép của liên kết Mo-Mo đã làm bền trạng thái oxi hóa +2 của Mo trong đime.

Molipđen(II) axetat được tạo nên khi axit axetic tác dụng với Mo(CO)6.

HỢP CHẤT CỦA Mo(III) VÀ W(III)

Rất khác với crom, trạng thái oxi hóa +3 là không đặc trưng cho Mo và nhất là cho W. Người ta đã biết được một số ít hợp chất của Mo có tính khử. Ngoài những hợp chất đơn giản như Mo₂O₃, Mo(OH)₃, MoF₃, MoCl₃, MoBr₃ và Mo₂S₃ còn có một số phức chất của Mo(III) có độ bền lớn. Số hợp chất của W(III) còn ít hơn nữa.

Molipđen(III) oxit

Molip den(III) oxit (Mo₂O₃) là chất bột màu đen mờ, không tan trong nước nhưng tan trong dụng dịch HCl cho dụng dịch màu đỏ chứa cation Mo³⁺. Nó được điều chế bằng cách dùng khí hiđro khử cẩn thận MoO₃ khi đun nóng.

Molipden(III) hidroxit

Molipđen(III) hidroxit (Mo(OH)₃) là chất kết tủa màu nâu-đen, không tan trong nước và dung dịch axit loãng nhưng phân hủy nước trong môi trường kiểm giải phóng hidro. Nó được tạo nên khi cho muối molipđen(III) tác dụng với amoniac hoặc kiểm.

Molipđen trihalogenua

Molipđen triflorua (MoF₃) là chất dạng tinh thể màu hồng có cấu tạo giống ReO₃, bền ở điều kiện thường. Khi đun nóng trong không khí ẩm, nó biến thành MoO₃ và HF. Nó bị khí hiđro khứ thành molipđen khi đun nóng. Muối này tạo nên khi đun nóng MoBr₃ trong dòng khí HF khô ở 600°C:

$$MoBr_3 + 3HF = MoF_3 + 3HBr$$

Molipden triclorua (MoCl₃) là chất dạng tinh thể hình kim màu đỏ thẫm không tan trong nước. Nó biến dần thành MoOCl khi để trong không khí, tác dụng với dung dịch

kiềm tạo thành kết tủa Mo(OH)3. Molipđen triclorua được tạo nên khi khử molipđen pentaclorua (MoCl₅) ở 250°C bằng khí hiđro hoặc đun nóng hơi MoCl₅ với molipđen bột:

$$MoCl_5 + H_2 = MoCl_3 + 2HCl$$

 $3MoCl_5 + 2Mo = 5MoCl_3$

Molipđen tribromua (MoBr₃) là chất dạng tinh thể hình kim màu lục không tan trong nước và axit, tác dụng với dung dịch kiềm tạo thành kết tủa hiđroxit. Nó được tạo nên khi đun nóng hơi MoCl $_5$ với HBr khô ở ~ 500°C.

Molipden(III) sunfua

Molipđen(III) sunfua (Mo₂S₃) là chất dạng tinh thể hình kim màu thép xám không tan trong nước và dung dịch axit loãng nhưng bị axit nitric đặc oxi hóa. Nó được tạo nên khi các nguyên tố tác dụng trực tiếp với nhau ở 1100°C.

Phức chất của Mo(III) và W(III)

Những ion phức bền của Mo(III) là $[MoF_6]^{3-}$, $[MoCl_6]^{3-}$, $[Mo(SCN)_6]^{3-}$, $[Mo(phen)_3]^{3+}$ và $[Mo(dipy)_3]^{3+}$ (phen là 1,10-phenantrolin, dipy là 2,2-dipyridyl) và của W (III) là $[W_2Cl_9]^{3-}$.

Anion phức [W2Cl9]3 được cấu tạo nên từ hai bát diện WCl6 nối với nhau qua một mặt phẳng chung, các khoảng cách của W-Cl là 2,46Å và của W-W là 2,41Å. Sự rút ngắn mạnh độ dài của liên kết W-W trong anion so với vonfram kim loại (2,8Å) cộng với tính nghịch từ của anion chứng tỏ liên kết có độ bội lớn. Anion $[Cr_2Cl_9]^{3-}$ có cấu tạo tương tự anion $[W_2Cl_9]^{3-}$ nhưng có tính thuận từ, điều này chứng tỏ trong anion không có liên kết Cr-Cr:

$$\begin{bmatrix} Cl & Cl & Cl \\ Cl & W & Cl \\ Cl & Cl & Cl \\ \end{bmatrix}$$

anion [W2Cl9]3-

anion [Cr2Cl9]3-

HỢP CHẤT CỦA Mo(IV) VÀ W(IV)

Molipden và vonfram dioxit

Molipđen đioxit (MoO2) và vonfram đioxit (WO2) có kiến trúc tinh thể giống rutin (TiO₂) nhưng ở đây có liên kết kim loại-kim loại nên kiến trúc bị sai lệch chút ít. Tinh thể ${
m MoO_2}$ có màu tím-nâu, ${
m WO_2}$ có màu nâu. Chúng rất khó nóng chảy, có thể thăng hoa trên 1000°C , rất bền với nhiệt, MoO_2 phân hủy thành MoO_3 và Moở 1977°C , WO_2 phân hủy tương tự ở 1857° C (trong khi CrO_2 phân hủy ở trên 400° C tạo thành Cr_2O_3 và O_2). Khi đun nóng trong không khí chúng chuyển thành MoO_3 và WO_3 tương ứng. Chúng không tan trong nước, MoO_2 không tan trong axit và kiềm nhưng bị axit nitric đặc oxi hóa thành MoO_3 còn WO_2 tan trong dung dịch đặc của axit và kiềm. Chúng được tạo nên khi cho dòng khí H_2 khử cẩn thận MoO_3 , WO_3 ở nhiệt độ $\sim 500^{\circ}$ C. Ở nhiệt độ cao hơn, chúng bị H_2 khử thành kim loại.

Molipđen và vonfram tetrahalogenua

Molipđen tetraflorua MoF₄ là chất bột màu lục, vonfram tetraflorua WF₄ bột màu nâu đỏ, MoCl₄ bột màu nâu, thăng hoa dễ dàng cho hơi màu vàng, WCl₄ tinh thể màu xám, khó nóng chảy và không bay hơi. Tất cả đều hút ẩm và dễ bị thủy phân, trừ WF₄ bền hơn với nước, chỉ bị thủy phân trong dung dịch kiềm nóng. Chúng được tạo nên bằng các phương pháp khác nhau, chẳng hạn như MoCl₄ và WCl₄ được tạo nên khi đun nóng đioxit tương ứng với dung dịch Cl₂ trong CCl₄ ở trong bình kín.


Ví dụ: ...

$$MoO_2 + CCl_4 = MoCl_4 + CO_2$$

Molipđen và vonfram disunfua

Molipđen đisunfua (MoS_2) và vonfram đisunfua (WS_2) là chất dạng tinh thể lục phương, MoS_2 có màu đen và WS_2 màu xám. Chúng rất bền với nhiệt, MoS_2 nóng chảy không phân hủy ở ~2100°C và WS_2 , phân hủy trong chân không ở 1200°C, đều không tan trong nước và chuyển thành trioxit khi đốt cháy trong không khí.

Molipđen đisunfua có kiến trúc lớp (Hình 31), mỗi lớp gồm một mặt phẳng chứa những vòng lục giác của các nguyên tử Mo kẹp giữa hai mặt phẳng chứa những vòng lục giác của các nguyên tử S và mỗi một nguyên tử Mo được 6 nguyên tử S bao quanh tạo thành hình lãng trụ tam giác. Các khoảng cách của Mo-Mo là 3,15Å, của Mo-S là 2,41Å và giữa các lớp là 6,26Å. Lực tác dụng giữa các lớp khá yếu nên tinh thể dễ bóc tách thành lớp giống như than chì: để lại vạch đen khi vạch lên giấy trắng và được dùng để làm chất bôi trơn cho những bộ phận máy móc chịu tải lớn.

Hình 31, Kiến trúc lớp của MoS₂

Các đisunfua MoS_2 và WS_2 được điều chế khi đun nóng các nguyên tố trong bình kín hoặc đun nóng trioxit trong khí H_2S .

Ví du:

$$WO_3 + 3H_2S = WS_2 + 3H_2O + S$$

Phức chất quan trọng nhất của Mo(IV) và W(IV) là anion octaxiano $[Mo(CN)_8]^{4^-}$ và $[W(CN)_8]^{4^-}$. Những anion này có màu vàng tồn tại trong dung dịch và trong tinh thể của muối và axit. Chúng bền đối với nước, dung dịch kiềm và dung dịch axit loãng và chỉ bị những chất oxi hóa mạnh như Ce^{4+} , MnO_4^- oxi hóa đến anion octaxiano của Mo(V) và W(V): $[Mo(CN)_8]^{3^-}$ và $[W(CN)_8]^{3^-}$.

HỢP CHẤT CỦA Mo (VI) VÀ W (VI)

Trạng thái oxi hóa +6 là bền nhất đối với Mo và W.

Molipđen và vonfram trioxit

Molipđen trioxit (MoO₃) và vonfram trioxit (WO₃) là những chất ở dạng tinh thể tà phương, MoO₃ màu trắng và WO₃ màu vàng. Tinh thể MoO₃ có cấu tạo lớp, được tạo nên bởi những bát diện MoO₆ nối với nhau qua hai cạnh chung và Mo nằm ở tâm của bát diện còn tinh thể WO₃ có mạng lưới giống ReO₃. Khác nhiều với CrO₃, chúng rất bền với nhiệt, MoO₃ nóng chảy ở 801°C và sôi ở 1155°C; WO₃ nóng chảy ở 1473°C và sôi không phân hủy ở ~1670°C. Chúng không tan trong nước tạo thành axit.

Là oxit rất bền, chứng bị Na, Mg, Al, H_2 và C khử thành kim loại ở nhiệt độ cao.

Tính anhidrit axit của chúng chỉ thể hiện khi tan trong dung dịch kiềm tạo thành molipđat, vonframat:

Ví du:

$$2KOH + WO_3 = K_2WO_4 + H_2O$$

Khi nấu chảy với kiềm hay cacbonat kiềm, tùy thuộc tỉ lệ chất và thời gian nấu, chúng tạo nên molipđat, vonframat và polimolipđat, polivonframat.

Ví dụ:

$$MoO_3$$
 + $2NaOH$ = Na_2MoO_4 + H_2O
 $2 MoO_3$ + $2NaOH$ = $Na_2Mo_2O_7$ + H_2O
 $3 MoO_3$ + $2NaOH$ = $Na_2Mo_3O_{10}$ + H_2O
 $4 MoO_3$ + $2NaOH$ = $Na_2Mo_4O_{13}$ + H_2O
 $6 MoO_3$ + $6NaOH$ = $Na_6Mo_6O_{21}$ + $3H_2O$

$$7 \text{ MoO}_3 + 6 \text{NaOH} = \text{Na}_6 \text{Mo}_7 \text{O}_{24} + 3 \text{H}_2 \text{O}$$

Cả hai oxit được dùng chủ yếu để điều chế kim loại. Chúng được điều chế bằng cách đốt cháy bột kim loại trong không khí hoặc nhiệt phân axit hay muối amoni polimolipđat và polivonframat.

Ví dụ:
$$(NH_4)_6 Mo_7 O_{24} = 7MoO_3 + 6NH_3 + 3H_2 O$$
$$(NH_4)_5 HW_6 O_{21} = 6WO_3 + 5NH_3 + 3H_2 O$$

Axit molipđic và axit vonframic

Dung dịch molipđat, vonframat khi được axit hóa mạnh tạo nên những chất gọi là axit molipđic, axit vonframic. Từ dung dịch ở nhiệt độ thường, những axit đó kết tinh dưới dạng MoO₃.2H₂O (hay H₂MoO₄.H₂O) và WO₃.2H₂O (hay H₂WO₄.H₂O) và khi nóng, kết tinh ở dạng MoO₃.H₂O (hay H₂MoO₄) và WO₃.H₂O (hay H₂WO₄).

Những axit này thực ra là những monohidrat và đihidrat của trioxit tương ứng, trong đó không có mặt những phân tử H_2MoO_4 và H_2WO_4 , tất cả những proton trong phân tử đã liên kết với oxi tạo thành H_2O . Tuy nhiên để đơn giản, người ta thường biểu diễn các axit đó bằng công thức H_2MoO_4 , H_2WO_4 .

Monohidrat MoO₃,H₂O là tinh thể màu trắng còn WO₃,H₂O là tinh thể màu vàng. Chúng không tan trong nước nhưng tan để trong dụng dịch kiểm và amoniac tạo thành muối đơn hay muối poli. Trên 150°C chúng mất nước biến thành anhidrit molipđic MoO₃ và anhidrit vonframic WO₃.

Đihiđrat $MoO_3.2H_2O$ là tinh thể màu vàng chanh không tan trong nước, $WO_3.2H_2O$ là tinh thể màu trắng, bên trong môi trường axit và khi rửa với nước dễ tạo nên dung dịch keo. Cả hai hiđrat này dễ mất bớt một phân tử nước khi sấy khô trên H_2SO_4 đặc hay P_4O_{10} .

Molipdat và vonframat

Molipđat là muối của axit molipđic và vonframat là muối của axit vonframic. Các muối của kim loại kiểm, amoni và magie tan trong nước, còn các muối khác không tan. Trong tinh thể của các muối M_2MoO_4 và M_2WO_4 (M=kim loại kiểm) có anion tứ diện đều MoO_4^2 và WO_4^2 còn trong muối của các kim loại khác, cấu hình của các anion đó bị lệch rõ rệt. Trong dung dịch, các muối tan tồn tại những ion không màu MoO_4^2 và WO_4^2 . Muối molipđat và vonframat thủy phân mạnh hơn cromat, điều đó chứng tỏ axit molipđic và axit vonframic là những axit yếu, yếu hơn axit cromic. Molipđat và vonframat không có tính oxi hóa mạnh như cromat. Các molipđat và vonframat kim loại kiểm và amoni là những muối thông dụng.

Xanh molipđen và xanh vonfram

Khi khử nhẹ dung dịch hơi axit của molipđat hay vonframat hoặc huyền phù trong nước của MoO_3 hay WO_3 bằng những chất như $SnCl_2$, SO_2 , N_2H_4 , H_2S ... người ta thu được dung dịch keo màu chàm đậm gọi là "xanh molipđen" hay "xanh vonfram". Thành phần của chúng biến đổi tùy theo bản chất của chất khử và điều kiện thực hiện phản ứng (nồng độ của các chất, pH, nhiệt độ ...). Chúng được coi như gồm có oxit và hidroxit của Mo và W với số oxi hóa trung gian giữa +5 và +6. Ví dụ như xanh molipđen với thành phần Mo_5O_{14} được tạo nên theo phản ứng:

$$5K_2MoO_4 + 10HCl + H_2S = Mo_5O_{14} + S + 10KCl + 6H_2O$$

được coi như là một oxit hỗn hợp Mo₂O₅.3MoO₃.

Người ta lợi dụng phản ứng tạo thành xanh molipđen và xanh vonfram để phát hiện ra molipđat và vonframat trong hoá học phân tích để nhuộm sợi, da và lông thú. Ví dụ như muốn nhuộm vải, người ta nhúng vải trước hết vào dung dịch $(NH_4)_6Mo_7O_{24}$ rồi sau đó vào dung dịch $SnCl_2$ đã được axit hóa bằng H_2SO_4 , vải sẽ có màu chàm.

Bronzo vonfram

Bronzơ vonfram là chất rắn và có tên gọi như vậy là vì bề ngoài giống với bronzơ là hợp kim của đồng và thiếc (còn gọi là thanh đồng). Bronzơ vonfram natri có thành phần biến đổi và được biểu diễn bằng công thức chung Na_xWO_3 , trong đó 0 < x < 1. Màu sắc của nó biến đổi theo thành phần, có màu chàm-tím khi $x \sim 0.3$, màu đỏ-tím khi $x \sim 0.48$, màu đỏ khi $x \sim 0.65$ và màu vàng chối khi $x \sim 0.9$. Do có màu đẹp nên được dùng làm bột màu của mực in cao cấp. Bronzơ vonfram có những tính chất đặc trưng của kim loại như ánh kim, dẫn điện và dẫn nhiệt.

Bronzơ vonfram natri với thành phần giới hạn là NaWO₃ có kiến trúc khuyết kiểu peropskit (CaTiO₃), trong đó các ion O²⁻ và cation Na⁺ được gói ghém sít sao kiểu lập phương còn nguyên tử vonfram nằm trong lỗ trống bát diện. Mặc dù số oxi hóa của W trong bronzơ là trung gian giữa +5 và +6 nhưng trạng thái hóa trị của tất cả các nguyên tử W đều như nhau. Bởi vậy, nguyên nhân dẫn điện của bronzơ vonfram không phải là sự di chuyển electron từ W(V) sang W(VI) hay từ W(IV) sang W(VI) mà là sự có mặt electron tự do trong tinh thể. Những electron này không thuộc cụ thể về nguyên tử W hay nguyên tử Na mà nằm trong vùng dẫn (thuyết vùng) giống như trong kim loại.

Về mặt hóa học, bronzơ vonfram rất trơ, không tan trong nước, các dung dịch kiểm và các axit, kể cả cường thủy Bronzơ vonfram được điều chế bằng cách dùng khí $\rm H_2$ hay các kim loại Na,W khử không hoàn toàn polivonframat kim loại kiểm.

Ví du:

$$Na_2W_3O_{10} + H_2 = Na_2W_3O_9 + H_2O$$

 $(hay Na_{-0.66}WO_3)$

Đến nay người ta chưa điều chế được bronzơ molipđen.

Polimolipđat và polivonframat

Khi thêm dần axit vào dung dịch molipđat hay vonframat kim loại kiểm, người ta thu được những polimolipđat hay polivonframat khác nhau. Thành phần của những polime đó phụ thuộc vào những điều kiện phản ứng như nồng độ, nhiệt độ, pH và thời gian. Ví dụ như trong môi trường axit, anion MoO_4^{2-} có thể ngưng tụ theo các phản ứng:

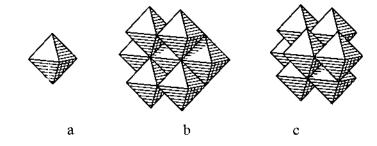
$$6 \text{ MoO}_4^{2-} + 6 \text{ H}^+ \implies \text{Mo}_6 \text{O}_{21}^{6-} + 3 \text{ H}_2 \text{O}$$

$$7 \text{ MoO}_4^{2-} + 8 \text{ H}^+ \implies \text{Mo}_7 \text{O}_{24}^{6-} + 4 \text{ H}_2 \text{O}$$

$$4 \text{ MoO}_4^{2-} + 6 \text{ H}^+ \implies \text{Mo}_4 \text{O}_{13}^{2-} + 3 \text{ H}_2 \text{O}$$

Trong dung dịch đậm hơn, có thể xảy ra phản ứng:

$$8 \text{ MoO}_4^{2-} + 12 \text{ H}^+$$
 \implies $\text{Mo}_8 \text{O}_{26}^{4-} + 6 \text{ H}_2 \text{O}$


Những anion MoO_4^{2-} và WO_4^{2-} cũng tồn tại bền vững trong môi trường kiểm giống như anion CrO_4^{2-} . Tuy nhiên trong dung dịch axit của molipđat ở $pH = 5 \div 6$ tồn tại chủ yếu anion hexamolipđat $Mo_6O_{21}^{6-}$; ở $pH = 4 \div 5$ tồn tại anion heptamolipđat $Mo_7O_{24}^{6-}$ và ở pH thấp hơn, anion octamolipđat $Mo_8O_{26}^{4-}$ Còn trong dung dịch axit của vonframat, ở những điều kiện nồng độ và pH như trên, tồn tại những polivonframat có thành phần khác và phức tạp hơn. Anion polivonframat bền là hiđrohexavonframat $HMo_6O_{21}^{5-}$ và bền nhất là đihiđrođođecavonframat $H_2W_{12}O_{40}^{6-}$.

Quá trình trùng hợp của MoO_4^{2-} và WO_4^{2-} cũng bao gồm những giai đoạn proton hóa, mất nước và ngưng tụ giống như CrO_4^{2-} nhưng xẩy ra ở mức độ cao hơn. Cr(VI) chỉ có thể tạo nên tetracromat $Cr_4O_{13}^{2-}$ còn Mo(VI) và W(VI) có thể tạo nên đođecamolipđat, đođecavonframat. Điều đó được giải thích là tetracromat $Cr_4O_{13}^{2-}$ được cấu tạo nên bởi các tứ diện CrO_4 . Vì Cr(VI) có kích thước bé trong khi polimolipđat và polivonframat gồm những đơn vị kiến trúc là bát diện MoO_6 và WO_6 bởi vì Mo(VI) và W(VI) có kích thước lớn hơn. Vậy nguyên nhân chính của sự trùng hợp mức độ thấp là Cr có bán kính nguyên tử bé hơn. Dưới đây là kiến trúc của một số anion polimolipđat được tạo nên bởi những bát diện MoO_6 nối với nhau qua đính chung và cạnh chung (Hình 32).

Như đã biết, các anion polimolipđat, polivonframat cũng được tạo nên khi MoO_3 , WO_3 tan trong kiềm nóng chảy. Những anion đó ở trong dung dịch nước có thể được hidrat hóa hoặc proton hóa một phần tạo nên những anion như $H_2Mo_7O_{28}^{6-}$ $H_2Mo_7O_{24}^{5-}$, $H_2Mo_8O_{26}^{2-}$, $H_2W_{12}O_{40}^{6-}$...

Khi có dư axit, các polimolipđat và polivonframat bị phá trùng hợp tạo nên sản phẩm cuối cùng là MoO₃ và WO₃.

Hình 32. Bắt diện MoO_6 (a)

Anion $Mo_7O_{24}^{6-}$ (b)

Anion $Mo_8O_{26}^{4-}$ (c)

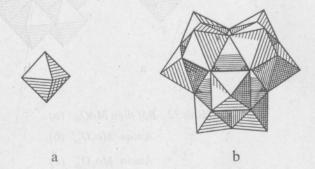
Những muối poli thông dung trong phòng thí nghiệm là amoni heptamolipđat $(NH_4)_6Mo_7O_{24}.4H_2O$ và amoni hidrohexavonframat $(NH_4)_5HW_6O_{21}.4H_2O$. Những muối này được điều chế bằng tác dụng của MoO_3 , WO_3 với dư dung dịch amoniac.

Hợp chất heteropoli

Khi axit hóa một hỗn hợp hai muối kim loại kiểm như molipđat hay vonframat với silicat hay hidrophotphat hoặc khi trộn các axit tương ứng của hỗn hợp hai muối đó theo tỉ lệ xác định, người ta thu được những hợp chất heteropoli (tiếng Hilap heteros là khác hay dị và polis là nhiều hay đa).

Ví du:

$$\begin{array}{rll} 12 \text{Na}_2 \text{MoO}_4 + \text{NaH}_2 \text{PO}_4 + 22 \text{ HNO}_3 &= \text{Na}_3 [\text{PMo}_{12} \text{O}_{40}] + 22 \text{ NaNO}_3 + 12 \text{ H}_2 \text{O}_{40} \\ \text{(hay Na}_2 \text{WO}_4) & \text{(hay Na}_3 [\text{PW}_{12} \text{O}_{40}]) \\ 12 \text{ Na}_2 \text{WO}_4 + \text{Na}_2 \text{SiO}_3 + 22 \text{ HNO}_3 &= \text{Na}_4 [\text{SiW}_{12} \text{O}_{40}] + 22 \text{ NaNO}_3 + 11 \text{ H}_2 \text{O}_{40} \\ \text{(hay Na}_2 \text{MoO}_4) & \text{(hay Na}_4 [\text{SiMo}_{12} \text{O}_{40}]) \end{array}$$

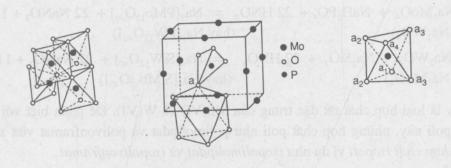

Đây là loại hợp chất rất đặc trưng của Mo(VI) và W(VI). Để phân biệt với những hợp chất heteropoli này, những hợp chất poli như polimolipđat và polivonframat vừa xét trên đây được gọi là hợp chất isopoli ví dụ như isopolimolipdat và isopolivonframat.

Người ta đã biết nhiều hợp chất heteropoli của Mo và W với các tỉ số của số nguyên tử Mo hay W trên số nguyên tử của nguyên tố khác, gọi là hetero nguyên tử, bằng 12; 11; 9; 8,5; 6; 3... và số lượng nguyên tố khác đó là vào khoảng 40 (cả kim loại và không-kim loại). Tuy nhiên, được nghiên cứu nhiều nhất là hợp chất heteropoli với 12 nguyên tử Mo trên 1 nguyên tử

B(III), Ge(IV), P(V), As(V), Si(IV), vi du như: $NH_3[PMo_{12}O_{40}].4H_2O$, $H_4[SiW_{12}O_{40}].3H_2O$ và $H_5[BW_{12}O_{40}].30H_2O$.

Phương pháp phân tích kiến trúc bằng tia Rơnghen cho biết những hợp chất heteropoli với 12 nguyên tử Mo hay W này có kiến trúc giống nhau và những anion heteropoli như $[PMo_{12}O_{40}]^{3^-}\text{ và }[SiW_{12}O_{40}]^{4^-}\text{ có kiến trúc giống với những anion isopoli }Mo_{12}O_{40}^{8^-}\text{ và }W_{12}O_{40}^{8^-}.$

Mỗi anion isopoli Mo₁₂O⁸hay W₁₂O⁸hay woc tạo nên bởi 4
nhóm mỗi nhóm gồm ba bát diện
MoO₆ hay WO₆ (Hình 33). Mỗi
nhóm gồm ba bát diện này (ở đây
gọi gọn là nhóm ba) có một nguyên
tử O là đỉnh chung cho 3 bát diện
và mỗi một bát diện nối với hai bát
diện khác ở trong nhóm qua hai
cạnh chung.



Hình 33. Bát diện MoO_6 hay WO_6 (a)

Anion $Mo_{12}O_{40}^{8-}$ hay $W_{12}O_{40}^{8-}$ (b)

Bốn nhóm ba đó nối với nhau qua những nguyên tử O chung và sắp xếp theo hướng như thế nào để bốn nguyên tử O chung của các nhóm ba là bốn đỉnh của một tứ diện nằm ở trung tâm của anion (Hình 34a). Trong anion isopoli, ở tâm của tứ diện đó không có nguyên tử còn trong anion *heteropoli* ở tâm của tứ diện đó là hetero nguyên tử P hay Si.

Như vậy, trong anion heteropoli, nguyên tử P hay Si nằm ở tâm của hình lập phương mà trung điểm của các cạnh là nguyên tử Mo và W (Hình 34b) và có 4 nguyên tử O chung cho 3 bát diện cùng nhóm (kí hiệu là a_1), 12 nguyên tử O chung cho 2 bát diện cùng nhóm (kí hiệu là a_2), 12 nguyên tử O chung cho 2 bát diện khác nhóm (kí hiệu là a_3) và 12 nguyên tử O riêng của mỗi bát diện (kí hiệu là a_4 , Hình 34c).

Hình 34. Kiến trúc của nhóm 3 hát diện (a) Kiến trúc của [PMo₁₂O₄₀]^{3.} hay [SiW₁₂O₄₀]^{3.} (b) Kiến trúc của hát diện MoO₆ hay WO₆ (c)

Khi kết tinh từ dung dịch nước, axit và muối heteropoli luôn luôn ở dạng hiđrat. Khi tác dụng với kiềm mạnh chúng bị phá hủy thành những anion đơn giống như hợp chất isopoli.

Ví du:

$$[PMo_{12}O_{40}]^{3-} + 23 OH^{-} = 12 MoO_{4}^{2-} + HPO_{4}^{2-} + 11 H_2O$$

 $[Fe_2W_{12}O_{42}]^{6-} + 18 OH^{-} = 12 WO_{4}^{2-} + Fe_2O_3.xH_2O + (9-x)H_2O$

Tuy nhiên, khác với hợp chất isopoli, chúng hoàn toàn bền trong dung dịch axit mạnh. Điều này được giải thích là bản thân axit heteropoli là axit mạnh, những proton đưa vào hệ sẽ không tương tác với axit đó và không phá hủy được những liên kết Mo-O-Mo hay W-O-W đã làm cho những anion đơn trùng hợp lại. Bởi vậy, người ta luôn tổng hợp hợp chất heteropoli trong môi trường axit. Các muối heteropolimolipđat và heteropolivonframat của cation có kích thước không lớn kể cả cation kim loại nặng thường tan trong nước. Các muối của cation lớn hơn thường không tan, ví dụ như những muối của Cs⁺, Ba²⁺, Pb²⁺ và một số muối của NH₄⁺, K⁺.

Tên gọi của anion heteropoli trong axit và muối bao gồm số phối tử, tên phối tử và tên của nguyên tử trung tâm (ở đây là hetero nguyên tử). Ví dụ muối $(NH_4)_3[PMo_{12}O_{40}]$ được gọi là amoni đođecamolipđenophotphat, muối $Na_4[SiW_{12}O_{40}]$ được gọi là natri đođecavonframosilicat, axit $H_5[BW_{12}O_{40}]$ được gọi là axit đođecavonframoboric...

Axit và muối heteropoli có tầm quan trọng đặc biệt vì đây là một ví dụ về polime vô cơ có tổ chức cao, trong một phân tử có một số nguyên tố được sắp xếp có quy luật. Ngoài những công dụng trong hóa học phân tích, hợp chất heteropoli gần đây còn được dùng để làm chất xúc tác cho quá trình đốt cháy nhiên liệu trong động cơ, chất ức chế quá trình ăn mòn...

Amoni đođecamolipđenophotphat hay thường gọi là amoni photphomolipđat là chất kết tủa màu vàng lần đầu tiên được Beczeliuyt (J.J. Berzélius, 1779-1848) điều chế cách đây gần 200 năm theo phản ứng:

$$3 NH_4^+ + PO_4^{3-} + 12 MoO_4^{2-} + 24H^+ = (NH_4)_3[PMo_{12}O_{40}] + 12H_2O$$

nhưng kiến trúc chính xác của hợp chất đó chỉ mới xác định vào năm 1939. Hoá học phân tích dùng phản ứng đó để định lượng photpho và molipđen. Tuy nhiên, kết tủa này có thành phần có thể biến đổi nên gần đây để định lượng ion PO_4^{3-} chính xác hơn, người ta hòa tan kết tủa amoni đođecamolipđenophotphat trong dung dịch kiểm và định lượng MoO_4^{2-} trong kết tủa bằng cách dùng muối Pb^{2+} để kết tủa $PbMoO_4$.

Molipđen và vonfram hexahalogenua

Molipđen chỉ tạo nên hexaflorua MoF₆, vonfram tạo nên nhiều hexahalogenua hơn. Molipđen hexaflorua là chất lỏng không màu, hoá rắn ở 17,5°C và sôi ở 35°C. Vonfram hexaflorua (WF₆) là tinh thể màu xanh-tím nóng chảy ở 275°C và sôi ở 346°C. Vonfram hexahronua (WBr₆) là tinh thể màu xanh-đen, nóng chảy ở 309°C và phân hủy ở 400°C. Tất

cả các hexahalogenua của Mo và W đều dễ tan trong các dung môi hữu cơ. Đa số bị thủy phân tạo nên oxihalogenua.

Ví dụ:

$$MoF_6 + H_2O = MoOF_4 + 2HF$$

 $MoF_6 + 2H_2O = MoO_2F_2 + 4HF$

Vì dễ bị thủy phân, MoF₆ ăn mòn thủy tinh khi có hơi ẩm.

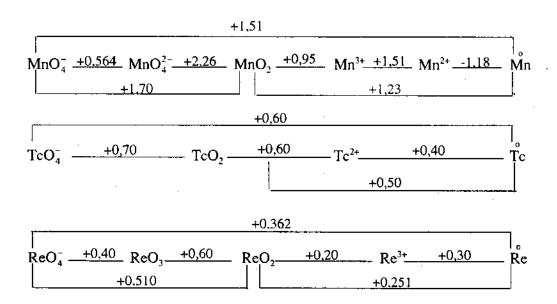
Các hexaflorua có thể kết hợp với florua kim loại kiềm tạo nên những muối kép MoF₆.2NaF, WF₆.2NaF.

Tất cả các hexahalogenua của Mo và W có thể điều chế bằng tác dụng trực tiếp của halogen với bột kim loại.

CHƯƠNG VI

CÁC NGUYÊN TỐ NHÓM VIIB

Nhóm VIIB gồm các nguyên tố: mangan (Mn), tecneti (Tc) và reni (Re). Dưới đây là một số đặc điểm của các nguyên tố đó (Bảng 14).


Bảng 14
Đặc điểm của nguyên tố nhóm VIIB

Nguyên	Số thứ tự nguyên tử	Cấu hình electron	Năng lượng ion hóa, eV			Bán kính nguyên tử	Thế điện cực chuẩn,
tố (É)	 	nguyên tử	Iı	I_2	I ₃	Å	V
Mn	25	[Ar]3d ⁵ 4s ²	7,43	15,63	33,69	1,3	-1,18 (Mn ²⁺ /Mn)
Тс	43	[Kr]4d ⁵ 5s ²	7,28	15,26	29,5	1,36	+0,4 (Tc ²⁺ /Tc)
Re	75	[Xe]4f ¹⁴ 5d ⁵ 6s ²	7,79	13,1	26,0	1,37	+0,3 (Re ³⁺ /Re)

Mangan, tecneti và reni có cấu hình electron giống nhau của nguyên tử $(n-1)d^5ns^2$ nên có tính chất giống nhau. Tuy nhiên Tc và Re giống nhau nhiều hơn so với mangan vì chúng có bán kính nguyên tử giống nhau. Với số lớn electron hóa trị, những nguyên tố nhóm VIIB tạo nên hợp chất có nhiều số oxi hóa khác nhau từ 0 đến +7. Cấu hình electron bền d^5 thể hiện ở năng lượng ion hóa thứ ba tương đối cao hơn tổng năng lượng ion hóa thứ nhất và thứ hai. Tuy nhiên việc mất 2 electron ns của nguyên tử biến thành cation kim loại chỉ đặc trưng ở Mn, còn Tc và Re có khuynh hướng tạo nên hợp chất với số oxi hóa cao hơn, nhất là với số oxi hóa +7. Những số oxi hóa phổ biến của Mn là +2, +4 và +7, của Tc là +4 và +7 và của Re là +3, +4, +5 và +7. Ở trạng thái oxi hóa +7, những nguyên tố này có những nét tương tự clo.

Sơ đồ của thế oxi hóa - khử cho thấy khác với Tc và Re, hợp chất của Mn(VII) là chất oxi hóa rất mạnh: thế oxi hóa - khử của quá trình chuyển trạng thái oxi hóa +7 về +4 của Mn, Tc và Re là +1,7; +0,7 và + 0,51V tương ứng. Sự tăng độ bền của trạng thái oxi hóa cao từ

nguyên tố nhẹ đến nguyên tố nặng trong nhóm VIIB cũng như trong các nhóm IVB, VB và VIB đã xét ở các chương trước đều có chung một nguyên nhân là sự tăng độ bền của liên kết cộng hoá trị làm tăng độ bền của anion chứa nguyên tố có số oxi hóa cao, ví dụ như anion TcO_4^- bền hơn anion MnO_4^- , anion WO_4^{2-} bền hơn anion CrO_4^{2-} ...

Sơ đồ thế oxi hóa - khử cũng cho thấy trong môi trường nước chỉ mangan kim loại dễ chuyển thành ion Mn²+ trong khi trạng thái kim loại là bền đối với Tc và Re. Điều này được giải thích là các kim loại Tc và Re có nhiệt thăng hoa (nhiệt nguyên tử hoá) cao hơn Mn rất nhiều (bảng 14) mặc dù tổng năng lượng ion hóa thứ nhất và thứ hai của chúng không khác nhau mấy.

CÁC ĐƠN CHẤT

Tính chất lí học

Mangan, tecneti và reni là những kim loại màu trắng bạc. Dạng bề ngoài của mangan giống với sắt, của tecneti giống với platin nhưng mangan cứng và khó nóng chảy hơn sắt. Mangan có một số dạng thù hình khác nhau về mạng lưới tinh thể và tỉ khối bền nhất ở nhiệt độ thường là dạng α với mạng lưới lập phương tâm khối. Tecneti là nguyên tố phóng xạ, đồng vị $^{99}_{43}$ Tc phân hủy β với chu kì bán rã là 2.10^5 tạo nên đồng vị bền $^{99}_{44}$ Ru. Dưới đây là những hằng số vật lí quan trong của mangan, tecneti và reni (Bảng 15).

Bảng 15 Hàng số vật lí quan trọng của các kim loại Mn, Tc và Re

Kim loại (E)	Nđnc., °C	Nđs., °C	Nhiệt thăng hoa, kJ/mol	Ti khối	Độ cứng (thang Moxo)	Độ dẫn điện (Hg=1)
Mn	1244	2080	280	7,44	5 ÷ 6	5
Тс	2140	4900	649	11,49		
Re	3180	5900	777	21,04	7,4	4,5

Mangan, tecneti và reni là kim loại rất khó nóng chảy và khó sôi. Sự tăng nhiệt độ nóng chảy, nhiệt độ sôi, nhiệt thăng hoa và độ cứng trong nhóm Mn-Tc-Re được giải thích bằng sự tăng phần cộng hóa trị trong liên kết kim loại. Về nhiệt độ nóng chảy, reni chỉ thua vonfram là kim loại khó nóng chảy nhất.

Mangan tinh khiết dễ cán và dễ rèn nhưng khi chứa tạp chất trở nên cứng và giòn. Mangan và reni tạo nên hợp kim với nhiều kim loại.

Thép mangan chứa 1 - 2% Mn đẻo đai và chịu mài mòn được dùng làm đường ray, trụ mộtơ, bánh răng. Thép mangan chứa 10 - 15% Mn dùng để làm những chi tiết rất cứng, chịu mài mòn và chịu va đập như búa và má của máy đập đá, bị của máy nghiền quặng, ghi đường sắt, gàu của tàu nạo vét sông và mũ sắt. Thép không ri loại không có Ni chứa 14% Cr và 15% Mn chịu được axit nitric và những khí chứa lưu huỳnh. Manganin là hợp kim của đồng chứa 12% Mn và 3% Ni có điện trở lớn và ít biến đổi theo nhiệt độ nên được dùng để làm cuộn điện trở trong các dụng cụ đo điện. Gang kính chứa 5 - 20% Mn.

Các hợp kim của Re với Pt, Pd, Rh, Ir, Mo, Ta, Cr, W... có những đặc tính như cứng, chịu nhiệt, chịu mài mòn và chịu axit nên là vật liệu quý cho các ngành hàng không, điện tử và điện kĩ thuật.

Bản thân kim loại Re cứng và chịu mài mòn nên được dùng làm la bàn, cân chính xác, những chi tiết quan trọng của máy bay siêu âm và tên lửa. Do khó bay hơi và dẫn điện tốt, kim loại reni được dùng làm điện cực trong ống phát tia Rơnghen và đèn vô tuyến, làm sợi tóc bóng đèn. Tecneti kim loại bền với nơtron được dùng làm vật liệu kiến trúc lò phản ứng nguyên tử.

Mangan có lượng bé trong sinh vật và là nguyên tố quan trọng đối với sự sống. Đất thiếu mangan làm cho thực vật thiếu mangan. Điều này có ảnh hưởng xấu đến sự phát triển xương của động vật. Ion mangan là chất hoạt hóa một số enzim xúc tiến một số quá trình tạo thành chất clorophin (chất diệp lục), tạo máu và sản xuất những kháng thể nâng cao sức đề kháng của cơ thể. Mangan cần cho quá trình đồng hóa nitơ của thực vật và quá trình tổng hợp protein. Nhu cầu mangan của người lớn là khoảng 8mg mỗi ngày. Thực phẩm chứa nhiều mangan là củ cải đỏ, cà chua, đậu tương, khoai tây. Mangan làm giảm lượng đường trong máu

nên tránh được bệnh tiểu đường. Sự tiếp xúc nhiều năm với bụi quặng pirolusit làm suy nhược hệ thần kinh, gan và tuyến giáp trạng.

Tính chất hóa học

Hoạt tính hóa học giảm xuống từ Mn đến Re. Mangan là kim loại tương đối hoạt động còn tecneti và reni là kim loại kém hoạt động.

Mangan dễ bị oxi không khí oxi hóa nhưng màng oxit Mn₂O₃ được tạo nên lại bảo vệ cho kim loại không bị oxi hóa tiếp tục kể cả khi đun nóng, các kim loại tecneti và reni bền trong không khí. Ở dạng bột và nhất là khi đun nóng, mangan, tecneti và reni tác dụng với oxi, Mn tạo nên Mn₃O₄ còn Tc và Re tạo nên Tc₂O₇ và Re₂O₇, với flo và clo, Mn tạo nên MnF₃, MnF₄, MnCl₂, Re tạo nên ReF₇, ReF₆, ReCl₆; chúng tác dụng với lưu huỳnh, nitơ, photpho, cacbon và silic. Trong đó, tương tác của Tc và Re xảy ra ở nhiệt độ cao hơn so với Mn. Nhờ tác dụng dễ dàng với các nguyên tố không–kim loại ở nhiệt độ cao nên mangan còn có vai trò của chất loại oxi trong luyện kim.

Tuy có tổng năng lượng ion hóa thứ nhất và thứ hai tương đương với magie, mangan là kim loại kém hoạt động hơn magie ($E^{\circ} = -2,36V$) vì có nhiệt thăng hoa rất lớn hơn magie ($\Delta H_{th} = 150 \text{kJ/mol}$). Trong dãy điện hóa, Mn đứng trước hiđro còn Tc và Re đứng sau. Cả ba kim loại không tác dụng với nước kể cả khi đun nóng. Ở dạng bột nhỏ, mangan tác dụng với nước giải phóng hiđro:

$$Mn + 2H_2O = Mn(OH)_2 + H_2$$

Phản ứng này xảy ra mãnh liệt khi trong nước có muối amoni vì $Mn(OH)_2$ tan trong dung dịch muối amoni giống như $Mg(OH)_2$:

$$Mn(OH)_2 + 2NH_4^+ = Mn^{2+} + 2NH_3 + 2H_2O$$

Tecneti bền với nước biển nên là vật liệu lí tương để làm vó tàu biến nhưng tiếc thay giá của kim loại đó hiện rất đắt.

Mangan tác dụng mạnh với dung dịch loãng của các axit như HCl, $\rm H_2SO_4$ giải phóng hiđro còn tecneti và reni chỉ tác dụng với axit nitric và axit sunfuric đặc.

Ví dụ:

$$3\text{Tc} + 7\text{HNO}_3 = 3\text{HTcO}_4 + 7\text{NO} + 2\text{H}_2\text{O}$$
(axit petecnetic)
$$3\text{Re} + 7\text{HNO}_3 = 3\text{HReO}_4 + 7\text{NO} + 2\text{H}_2\text{O}$$
(axit perenic)

trong khi mangan bị axit nitric không đặc và nguội thụ động hóa giống như crom và tan trong axit đó khi đun nóng theo phản ứng:

$$3Mn + 8HNO_3 = 3Mn(NO_3)_2 + 2NO + 4H_2O$$

Khác với mangan và tecneti, kim loại reni tan trong hiđro peoxit tạo thành axit perenic:

$$2Re + 7H_2O_2 = 2HReO_4 + 6H_2O$$

Trạng thái thiên nhiên và phương pháp điều chế

Trong thiên nhiên mangan là nguyên tố tương đối phổ biến, đứng hàng thứ ba trong các kim loại chuyển tiếp sau Fe và Ti, tecneti có lượng không đáng kể còn reni là nguyên tố hiểm và rất phân tán. Trữ lượng của Mn trong vỏ Trái Đất là 0,032%, của Re là 8,5.10⁻⁹% tổng số nguyên tử.

Khoáng vật chính của mangan là hausmanit (Mn₃O₄) chứa khoảng 72% Mn, pirolusit (MnO₂) chứa khoảng 63% Mn, braunit (Mn₂O₃) và manganit (MnOOH). Reni không có khoáng vật riêng mà ở lẫn dưới dạng tạp chất với các khoáng vật sunfua kim loại, nhất là molipđenit và colombit. Những nước có nhiều mỏ quặng mangan là Nga, Nam Phi, Ấn Độ, Gabon, Brazin và Australia. Nước ta có mỏ pirolusit lẫn braunit ở Tốc Tác và Bản Khuôn (Cao Bằng) và mỏ pirolusit lẫn hematit ở Yên Cư và Thanh Tứ (Nghệ An).

Từ thời cổ đại xưa, pirolusit đã được dùng để làm mất màu lục của thủy tinh gây nên bởi tạp chất sắt(II). Thời bấy giờ, người ta coi những khoáng vật manhetit (magnetite), pirit và pirolusit là một và gọi là magnesia. Đây là tên của một thành phố cổ vùng Tiểu Á có mỏ manhetit (Fe₃O₄). Mãi đến năm 1774 nhà hóa học Thụy Điển Silo mới chứng minh được pirolusit là hợp chất của một nguyên tố chưa biết và trong cùng năm đó nhà hóa học khác người Thụy Điển là Gan đã điều chế được kim loại mangan từ quặng pirolusit. Tên gọi mangan (tên La Tinh manganesium) xuất phát từ tiếng Hy Lạp mangane là nhằm lẫn.

Gần 95% Mn được sản xuất là dùng để chế thép trong ngành luyện kim. Mangan có khá năng loại oxi, loại lưu huỳnh trong thép và gang và có khả năng tạo hợp kim với sắt thành thép đặc biệt nên truyền cho thép những phẩm chất tốt như khó rỉ, cứng và chịu mài mòn. Người ta dùng hợp kim feromangan chứa 70 - 80% Mn để đưa mangan vào thép. Hợp kim đó được sản xuất trong công nghiệp bằng cách, dùng than cốc khử mangan và sắt ở nhiệt độ cao:

$$MnO_2 + Fe_2O_3 + 5C = Mn + 2Fe + 5CO$$

Mangan kim loại được sản xuất theo phương pháp nhiệt nhôm: dùng bột Al khử oxit Mn_3O_4 đã được tạo nên khi nung pirolusit ở 900°C :

$$3MnO_2 = Mn_3O_4 + O_2$$

 $3Mn_3O_4 + 8Al = 9Mn + 4Al_2O_3$

Ở đây, người ta không khủ trực tiếp pirolusit vì phản ứng của nó với nhôm xảy ra quá mạnh. Sản phẩm kim loại thu được chứa 94 - 96% Mn và 6 - 4% tạp chất Fe, Si và Al.

Mangan tinh khiết được điều chế bằng cách điện phân dung dịch MnSO₄. Mangan tinh khiết dùng để chế những hợp kim đòi hỏi thành phân chính xác như manganin, nicrom,

đuyara.

Năm 1925 các nhà khoa học người Đức là hai ông bà Nôđac (Noddack) và ông Tacke đã phát hiện được nguyên tố reni nhờ quang phổ tia Ronghen, đến năm 1928 Nôđac và Bec (Berg) tách ra được 1g reni kim loại khi chế hoá 600 kg tinh quặng molipđenit và đến năm 1930 đã đề ra phương pháp điều chế kim loại reni ở trong công nghiệp. Nôđac đặt tên cho nguyên tố đó là reni (rhenium) để ghi nhớ sông Ranh (Rhein) ở đất nước của ông.

Năm 1937 hai nhà vật lí người Ý là Periê và Segre (Perrier và Segré) đã tổng hợp được tecneti khi bắn trong thời gian vài tháng những hạt nơtron vào molipđen kim loại ở trong máy gia tốc:

$$^{98}_{42}$$
Mo + $^{2}_{1}$ D = $^{99}_{43}$ Mo + $^{1}_{0}$ n

Đây là nguyên tố được tổng hợp nhân tạo đầu tiên nên được gọi là tecneti, tiếng Hi Lạp technetos nghĩa là nhân tạo.

Tuy nhiên, để có lượng lớn hơn, người ta tách tecneti từ chất thải của lò phản ứng nguyên tử. Tecneti là một nguyên tố mảnh trong những sản phẩm phân chia hạt nhân của uran. Quá trình tách rất phức tạp vì chất thải có độ phóng xạ lớn và hàm lượng Tc hết sức bé. Trong Im³ dung dịch thải gồm khoảng 150 đồng vị phóng xạ của các nguyên tố mảnh chỉ có một ít miligam đồng vị bền ⁹⁹/₄₃Tc. Để nâng cao hàm lượng tecneti, người ta cho dung dịch thải đi qua cột đựng nhựa anionit, tecneti ở dạng anion TcO₄ được nhựa giữ lại còn đại đa số kim loại mảnh (như ¹³⁷Cs, ⁹⁰Sr, ¹⁴⁴Ce v.v...) đi theo dung dịch thải. Rửa nhựa anionit bằng axit nitric, chiết axit HTcO₄ được tạo nên bằng dung môi hữu cơ, kết tủa tecneti dưới dạng Tc₂S₇, hòa tan kết tủa này và kết tủa tecneti dưới dạng NH₄TcO₄.

Khử NH₄TcO₄ bằng khí hiđro ở nhiệt độ cao sẽ được bột tecneti kim loại:

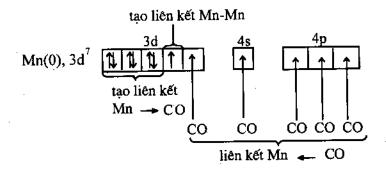
$$2NH_4TcO_4 + 7H_2 = 2Tc + 8H_2O + 2NH_3$$

Phương pháp này cũng cho phép điều chế reni kim loại rất tinh khiết dùng làm chất xúc tác trong hóa học hữu cơ:

$$2NH_4ReO_4 + 7H_2 = 2Re + 8H_2O + 2NH_3$$

Amoni perenat (NH_4ReO_4) được điều chế từ sản phẩm thu hồi của lò đốt molipđenit. Tinh quặng molipđenit thường chứa khoảng 0.02 - 0.04% Re ở dưới dạng ReS_2 . Khi đốt molipđenit, hợp chất đó một phần biến thành Re_2O_7 bay hơi và phần khác bị kéo theo khí thoát ra của lò đốt. Bụi và bùn thu được khi cho khí lò đi qua tháp lọc điện và tháp lọc ướt sẽ là tinh quặng của reni. Chế hóa tinh quặng đó bằng NaOH khi có mặt chất oxi hóa như O_2 , Cl_2 thu được natri perenat ($NaReO_4$). Hòa tan $NaReO_4$ vào nước, axit hoá dung dịch, chiết axit perenic

9.6


bằng dung môi hữu cơ và sau cùng tái chiết axit perenic trong dung môi hữu cơ bằng dung dịch NH_3 sẽ được NH_4ReO_4 .

Bột của kim loại Tc và Re được ép và thiêu kết (theo phương pháp luyện kim bột) thành thỏi và từ thỏi cán thành lá. Ví dụ như bột Re kim loại được ép dưới áp suất ở 1200°C trong khí quyển hiđro.

HỢP CHẤT Mn(0), Tc(0) VÀ Re(0)

Những cacbonyl của Mn, Tc và Re có công thức phân tử chung là $E_2(CO)_{10}$ (ở đây E= Mn, Tc và Re). Phân tử có tính nghịch từ và nguyên tử có số oxi hóa bằng không nên hợp chất là cacbonyl hai nhân trong đó có liên kết kim loại-kim loại:

Để cụ thể hơn, chúng ta xét cấu tạo của phân tử đimangan đecacacbonyl $Mn_2(CO)_{10}$. Phân tử có dạng hai hình bát diện nối với nhau qua một đỉnh chung, nguyên tử Mn nằm ở tâm của hình bát diện, phân tử CO nằm tại các đỉnh còn lại. Trong phân tử, mỗi nguyên tử Mn có cấu hình electron $3d^7$:

Năm obitan trống 3d, 4s và 4p ở mỗi nguyên tử Mn nhận cặp electron của năm phân tử CO tạo thành liên kết σ -cho nhận, ba cặp electron 3d tạo liên kết π -cho với những $MO\pi^*$ trống của phân tử CO còn một electron độc thân 3d ghép đôi với electron độc thân 3d của nguyên tử Mn khác tạo liên kết σ kim loại-kim loại. Như vậy do có số lẻ electron Mn, Tc và Re có thể tạo nên hợp chất cacbonyl ở dạng đime $[E(CO)_5]_2$. Ở đây ta thấy quy tắc khí hiếm cũng được tuần theo, ví dụ như mỗi nguyên tử Mn trong đime cacbonyl đều có cấu hình electron của nguyên tử Kr (tổng electron : $25 + 1 + (2 \times 5) = 36$).

Ở điều kiện thường, các đime cacbonyl của Mn, Tc và Re là chất ở dạng tinh thể không

màu trừ $Mn_2(CO)_{10}$ có màu vàng chói. Tất cả đều dễ thăng hoa, không tan trong nước nhưng tan trong dung môi hữu cơ. $Mn_2(CO)_{10}$ nóng chảy ở 155°C trong bình kín và phân hủy ở 110°C, $Tc_2(CO)_{10}$ và $Re_2(CO)_{10}$ nóng chảy ở 160°C và 177°C trong bình kín. Ở nhiệt độ cao, chúng phân hủy thành kim loại và khí CO.

Các đime cacbonyl này không tác dụng với nước và dung dịch axit loãng nhưng tác dụng với dung dịch kiềm hay dung dịch của kim loại kiềm trong dung môi hữu cơ tạo thành muối chứa anion cacbonylat và tác dụng với halogen:

Ví dụ:

$$[\mathring{Mn}(CO)_5]_2 + 2Na = 2Na[\mathring{Mn}(CO)_5]$$

 $[\mathring{Mn}(CO)_5]_2 + Br_2 = 2[\mathring{Mn}(CO)_5]Br$

Trong phản ứng trên, đime cacbonyl bị khử còn trong phản ứng dưới, đime cacbonyl bị oxi hóa.

Đimangan đecacacbonyl được điều chế ở nhiệt độ thường khi cho khí CO ở áp suất 20atm tác dụng với hỗn hợp của MnI_2 và bột Mg trong ete. Còn địtecneti và đireni đecacacbonyl được điều chế bằng tác dụng của khí CO với Tc_2O_7 và Re_2O_7 (tương ứng) ở 250°C và áp suất 200 atm.

Ví dụ:

$$Re_2O_7 + 17CO = Re_2(CO)_{10} + 7CO_2$$

HỢP CHẤT CỦA MANGAN(II)

Mangan(II) oxit

Mungan(II) oxit (MnO) là chất bột màu xám-lục, có mạng lưới tinh thể kiểu NaCl, có thành phần biến đổi từ MnO đến MnO_{1.5} và nóng chảy ở 1780°C.

Nó không tan trong nước nhưng tan dễ trong dung dịch axit tạo thành muối mangan(II).

Khi đun nóng trong không khí ở khoảng 200 - 300°C, monooxit biến thành đioxit:

$$2MnO + O_2 = 2MnO_2$$

Mangan(II) oxit thường được dùng làm chất xúc tác trong tổng hợp hữu cơ. Nó được điều chế khi nhiệt phân muối mangan(II) cacbonat hay oxalat trong khí quyển hiđro:

$$MnCO_3 = MnO + CO_2$$

$$MnC_2O_4 = MnO + CO_2 + CO$$

hoặc khử các oxit cao của mangan bằng khí H2 hay CO ở nhiệt độ cao.

Ví du:

$$Mn_3O_4 + H_2 = 3MnO + H_2O$$

Mangan(II) hidroxit

Mangan(II) hidroxit $(Mn(OH)_2)$ là kết tủa trắng có thành phần hợp thức và kiến trúc tinh thể giống $Mg(OH)_2$. Nó không tan trong nước nhưng tan khi có mặt muối amoni.

Nó có tính bazơ yếu và tan dễ dàng trong dung dịch axit tạo thành muối mangan(II). Thể hiện tính lưỡng tính rất yếu, kết tủa $Mn(OH)_2$ chỉ tan ít trong dung dịch kiểm rất đặc, ví dụ theo phản ứng:

$$Mn(OH)_2 + KOH = K[Mn(OH)_3]$$

Phức chất hiđroxo này không bền và phân hủy ngay trong dung dịch kiềm đặc. Bởi vậy, người ta có thể coi như Mn(OH)₂ không phải là lưỡng tính.

 \mathring{O} nhiệt độ thường, màu trắng của kết tủa dễ chuyển thành màu nâu vì dễ bị oxi không khí oxi hóa thành MnOOH (hay Mn₂O₃.H₂O) rồi H₂MnO₃ (hay MnO₂.H₂O).

Ví dụ:

$$4Mn(OH)_2 + O_2 = 4MnOOH + 2H_2O$$

Mangan(II) hidroxit cũng dễ dàng bị oxi hóa bởi Cl2, H2O2 và các chất oxi hóa khác.

Ví dụ:

$$Mn(OH)_2 + 2KOH + Cl_2 = MnO_2 + 2KCl + 2H_2O$$

 $Mn(OH)_2 + H_2O_2 = H_2MnO_3 + H_2O$

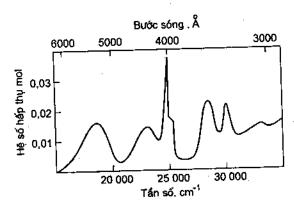
Trong phòng thí nghiệm, Mn(OH)₂ được điều chế khi cho dung dịch muối mangan(II) tác dụng với kiềm trong khí quyển hiđro:

$$Mn^{2+} + 2OH^{-} = Mn(OH)_{2}$$

Ở đây người ta không dùng dụng dịch NH3 vì nó không cho kết tủa hoàn toàn.

Muối mangan(II)

Mangan(II) tạo muối với tất cả những anion đã biết. Đa số muối dễ tan trong nước, trừ MnS, $Mn_3(PO_4)_2$ và $MnCO_3$ hơi ít tan. Nhiều muối kết tinh ở dạng hiđrat ví dụ như $MnCl_2.xH_2O$ (trong đó x=7,5,4,2,1), $Mn(NO_3)_2.xH_2O$ (trong đó x=6,4,3,2,1). Khi đun nóng, tinh thể hiđrat $MnSO_4.xH_2O$ có thể mất nước dần và cuối cùng biến thành muối khan:


trong khi tinh thể hiđrat $MnCl_2.xH_2O$ mất nước dần và cuối cùng tạo thành muối bazơ vì bị phân hủy:

$$MnCl_2 + H_2O \iff Mn(OH)Cl + HCl$$

bởi vậy muốn được MnCl₂ khan cần phải đun nóng hiđrat trong khí quyển HCl.

Muối mangan(II) bị thủy phân yếu giống như muối magie(II). Sự giống nhau này của muối cũng như sự giống nhau của hidroxit được giải thích là ion Mn^{2+} có bán kính (0,8Å) gần với ion Mg^{2+} (0,78Å)

Muối mangan(II) thường có màu hồng nhạt, khi tan trong nước cho dung dịch gần như không màu chứa ion bát diện $[Mn(H_2O)_6]^{2+}$. Ion này cũng có trong một số tinh thể hiđrat như $MnCl_2.6H_2O$, $MnSO_4.7H_2O$, $Mn(NO_3)_2.6H_2O$ và $Mn(ClO_4)_2.6H_2O$. Phổ hấp thụ của ion $[Mn(H_2O)_6]^{2+}$ được trình bày trên hình 35.

Hình 35. Phổ hấp thụ electron của ion $[Mn(H_2O)_6]^{2+}$ ở trong vùng trông thấy

Cường độ hấp thụ bé của các dải hấp thụ gây ra màu yếu của ion $[Mn(H_2O)_6]^{2+}$. Điều này có liên quan với độ bền cao của cấu hình electron $3d^5$ và với sự ngăn cấm chuyển electron (về spin và về tính đối xứng trong trường bát diện).

Những muối mangan(II) thông dụng trong phòng thí nghiệm và trong thực tế là $MnCl_2.4H_2O$, $MnSO_4.5H_2O$ và $Mn(NO_3)_2.6H_2O$.

Ion Mn²⁺ có khả năng tạo nên nhiều phức chất nhưng hằng số bền của những phức chất đó không lớn hơn so với hằng số bền của phức chất các kim loại hóa trị hai khác (Fe, Co, Ni, Cu) vì rằng ion Mn²⁺ có bán kính lớn nhất trong các kim loại hóa trị hai và năng lượng làm bền

bởi trường tinh thể của các phức chất của Mn²+ đều bằng số không.

Ví dụ những phức chất được tạo nên theo các phản ứng sau đây:

$$MnF_2$$
 + $4KF$ = $K_4[MnF_6]$
 $MnCl_2$ + $2KCl$ = $K_2[MnCl_4]$

đều phân hủy trong dung dịch loãng.

1,0

Sơ đồ thế oxi hóa - khử:

$$MnO_4^{3+} - \frac{+1,51}{}$$
 $Mn^{2+} - 1,18$ Mn (môi trường axit)

cho thấy trong môi trường axit, trạng thái oxi hóa +2 là bền nhất của mangan. Muối mangan chỉ bị oxi hóa bởi những chất oxi hóa mạnh. Trong môi trường axit, ion Mn^{2+} bị những chất oxi hóa mạnh như PbO_2 , $NaBiO_3$, $(NH_4)_2S_2O_8$ oxi hóa thành ion MnO_4 màu tím. Những phản ứng đó đã được trình bày trước đây (xem Tập hai).

Khi nung với hỗn hợp của chất kiểm và chất oxi hóa (như KNO₃, KClO₃), muối mangan(II) biến thành muối manganat có màu lục.

Ví du:

$$MnSO_4 + 2K_2CO_3 + 2KNO_3 = K_2MnO_4 + 2KNO_2 + K_2SO_4 + 2CO_2$$
(kali manganat)

Các muối mangan(II) ở dạng tinh thể hiđrat được điều chế bằng tác dụng của mangan(II) oxit hay hiđroxit với axit. Các muối khan thường được điều chế bằng phương pháp khô hoặc trong những dụng môi không phải nước, ví dụ như $\text{Mn}(\text{NO}_3)_2$ khan được điều chế bằng tác dụng của đimangan đecacacbonyl với N_2O_4 lỏng:

$$Mn_2(CO)_{10} + 4N_2O_4 = 2Mn(NO_3)_2 + 4NO + 10CO$$

muối nitrat khan đó không tan trong N_2O_4 lỏng nên để dàng kết tủa.

HỢP CHẤT CỦA MANGAN(III)

Sơ đồ thế oxi hóa - khử:

$$MnO_4^{-} + 0,564 \over +0,588$$
 $MnO_2^{-} + 0,6 \over +0,588$ $MnO_2 + 0,15 \over +0,588$ $MnO_1 + 0,588$ $MnO_2 + 0,15 \over +0,15$ $MnO_1 + 0,15 \over +0,15$ $MnO_2 + 0,15 \over +0,15$ $MnO_1 + 0,15 \over +0,15$ $MnO_2 + 0,15 \over +0,15$ $MnO_3 + 0,15 \over +0,15$ $MnO_4 + 0,15$ M

cho thấy trong môi trường kiểm trạng thái oxi hóa +3 là bền nhất của mangan.

Mangan(III) oxit

Mangan(III) oxit (Mn₂O₃) là chất bột màu đen không tan trong nước. Khi đun nóng trong không khí ở 950 - 1100°C nó biến thành Mn₃O₄ và khi đun nóng trong khí hiđro ở 300°C biến thành MnO.

Tinh thế mangan(III) oxit có kiến trúc không phải lập phương, mỗi nguyên tử Mn được bao quanh bởi bốn nguyên tử O với độ dài Mn-O là 1,96Å và hai nguyên tử O với độ dài Mn-O là 2,05 ÷ 2,25Å. Trạng thái hóa trị của Mn trong oxit ứng đúng với số oxi hóa +3 của nó và oxit có công thức đơn giản là $\mathrm{Mn_2O_3}$. Điều này khác với quan niệm không đúng trước đây coi oxit đó là oxit hỗn hợp $\mathrm{MnO.MnO_2}$ (hay còn gọi là muối mangan(II) manganit $\mathrm{MnMnO_3}$). Giả thiết đó đã được dựa vào tác dụng của oxit với dụng dịch axit loãng ($\mathrm{H_2SO_4}$, $\mathrm{HNO_3}$):

$$Mn_2O_3 + H_2SO_4 = MnO_2 + MnSO_4 + H_2O$$

 $Mn_2O_3 + 2HNO_3 = MnO_2 + Mn(NO_3)_2 + H_2O$

Nhưng khi tác dụng với dung dịch axit đặc (H_2SO_4, H_3PO_4) oxit đó tạo nên muối mangan(III).

Ví du:

$$Mn_2O_3 + 3H_2SO_4 = Mn_2(SO_4)_3 + 3H_2O$$

Oxit Mn_2O_3 tạo nên phức chất của mangan(III) khi tan trong axit flohiđric, axit xianhiđric. Nó cũng kết hợp với oxit MO của kim loại hóa trị hai (Ni, Co, Zn, Cd) tạo nên oxit hỗn hợp $MO.Mn_2O_3$ kiểu spinen. Như vậy Mn_2O_3 gần giống với Al_2O_3 và Fe_2O_3 .

Mangan(III) oxit tồn tại trong thiên nhiên dưới dạng khoáng vật braunit. Oxit đó điều chế được khi nung MnO₂ trong không khí ở 550 - 900°C.

Mangan(III) hidroxit

Mangan(III) hiđroxit (Mn(OH)₃). Tương tự như những trường hợp của Al(OH)₃ và Cr(OH)₃ đã xét trước đây, khi được kết tủa từ dung dịch nước, mangan(III) hiđroxit không có thành phần ứng đúng công thức Mn(OH)₃ mà là hiđrat Mn₂O₃.xH₂O. Ở 100°C hiđrat này mất bốt nước biến thành monohidrat Mn₂O₃.H₂O thường được biểu diễn bằng công thức MnOOH. Dạng metahidroxit này tồn tại trong thiên nhiên dưới dạng khoáng vật manganit.

Monohidroxit MnOOH là chất ở dạng tinh thể màu nâu gần như đen, không tan trong nước. Ở $365 - 400^{\circ}$ C nó mất nước biến thành Mn_2O_3 . Khi tác dụng với dụng dịch axit loãng nó thường tạo nên MnO_2 và muối mangan(II). Với một số axit hữu cơ như axit oxalic, axit xitric, axit salixilic, nó tạo nên hợp chất bền của mangan(III).

Trong phòng thí nghiệm, mangan(III) hiđroxit được điều chế khi cho chất oxi hóa như

Cl₂ hay KMnO₄ tác dụng với huyền phù MnCO₃ ở trong nước:

$$3MnCO_3 + Cl_2 + H_2O = 2MnOOH + MnCl_2 + 3CO_2$$

 $8MnCO_3 + 2KMnO_4 + 6H_2O = 10MnOOH + 2KOH + 8CO_2$

Trimangan tetraoxit

Trimangan tetraoxit (Mn₃O₄) là chất ở dạng tinh thể nóng chảy ở 1590°C, có thể có các màu vàng, đỏ hoặc đen tùy thuộc phương pháp điều chế. Tinh thể có kiến trúc kiểu spinen lệch, trong đó ion Mn²⁺ chiếm lỗ trống tứ diện, còn ion Mn³⁺ chiếm lỗ trống bát diện ở giữa các ion O²⁻ sắp xếp sít sao kiểu lập phương. Như vậy nó là oxit hỗn hợp của mangan(II) và mangan(III) $^{2+}_{Mn}O.Mn_2^{-1}O_3$. Điều này khác với quan niệm trước đây coi nó là oxit hỗn hợp của mangan(II) và mangan(IV) $^{2+}_{Mn}O.MnO_2$. Trên thực tế trong oxit đó không có mangan(IV). Giả thiết không đúng đó cũng xuất phát từ tác dụng của nó với dung dịch axit tạo nên MnO₂ và muối mangan(II).

Oxit Mn_3O_4 tồn tại tự do trong thiên nhiên dưới dạng khoáng vật hausmanit. Oxit đó được điều chế khi nung MnO_2 hay Mn_2O_3 ở 900°C hoặc dùng khí H_2 khử các oxit đó ở khoảng 200°C.

Ví đụ:

$$3MnO_2 + 2H_2 = Mn_3O_4 + 2H_2O$$

Ở nhiệt độ cao hơn, các oxit của mangan bị khử thành kim loại.

Muối mangan(III)

Sơ đồ thế oxi hóa-khử cho thấy cation Mn³+ không bền, trong dung dịch dễ bị phân hủy theo phản ứng:

$$2Mn^{3+} + 2H_2O \implies MnO_2 + Mn^{2+} + 4H^4$$

Tuy nhiên, cation Mn3+ được làm bền hơn ở trong những phức chất.

Những muối mangan(III) đơn giản và tương đối thông dụng là:

Mangan(III) florua (MnF₃) là chất dạng tinh thể đơn tà màu đỏ, phân hủy ở trên 600°C thành MnF₂ và F₂ và dễ dàng thủy phân theo phản ứng:

$$2MnF_3 + 2H_2O = MnO_2 + MnF_2 + 4HF$$

Trong dung dịch có dư HF, nó kết tinh ở dạng tinh thể hiđrat màu đỏ thắm $MnF_3.2H_2O$. Nó dễ tạo nên với florua kim loại kiểm những phức chất màu đỏ thẫm như $K[MnF_4]$, $K_2[MnF_5]$.

Mangan(III) florua được điều chế bằng tác dụng của khí F_2 với mangan kim loại hoặc với mangan(II) halogenua.

Ví đu:

$$2MnI_2 + 3F_2 = 2MnF_3 + 2I_2$$

Hiện nay người ta chưa biết được các muối clorua, bromua và iođua của Mn(III) nhưng tách được những tinh thể màu đỏ thẫm của phức chất Na₂[MnCl₅], K₂[MnCl₅] và không tổng hợp được phức chất tương tự của Br⁻ và I⁻ có lễ vì Br⁻ và I⁻ có thể khử ion Mn³⁺.

Mangan(III) sunfat ($Mn_2(SO_4)_3$) là chất dạng tinh thể màu lục, hút ẩm mạnh và bị thủy phân. Nó phân hủy ở 300°C:

$$2Mn_2(SO_4)_3 = 4MnSO_4 + 2SO_3 + O_2$$

Nó được điều chế khi đun nóng MnO₂ trong axit sunfuric đặc ở 138°C:

$$4MnO_2 + 6H_2SO_4 = 2Mn_2(SO_4)_3 + 6H_2O + O_2$$

Mangan(III) axetat (Mn(CH₃COO)₃) là chất dạng tinh thể màu nâu, hút ẩm mạnh và bị thủy phân. Hiđrat Mn(CH₃COO)₃.2H₂O là tinh thể cũng có màu nâu, dễ điều chế và tương đối bền nên được nghiên cứu kĩ nhất và thường dùng làm chất đầu để điều chế các hợp chất của mangan(III).

 $Mn(CH_3COO)_3.2H_2O$ được điều chế khi dùng Cl_2 hay $KMnO_4$ oxi hóa $Mn(CH_3COO)_2$ trong axit axetic băng và nóng.

Những phức chất thường gặp của mangan(III):

 $M_3[Mn(CN)_6]$ (trong đó $M=Na^+$, K^+ , NH_4^+) là chất dạng tinh thể màu đỏ thẫm, $K_3[Mn(C_2O_4)_3].3H_2O$ là tinh thể màu đỏ - tím; mangan(III) axetylaxetonat $[Mn(C_3H_4O_2)_3]$ là tinh thể màu đen nhánh, không tan trong nước, tan trong dung môi hữu cơ và điều chế dễ dàng khi cho huyền phù MnOOH trong nước hay cho $Mn(CH_3COO)_3$ tác dụng với axetylaxeton, và phức chất với axit etylenđiamin-tetraaxetic [Mn(EDTA)] bền với nước, có thể để lâu trong dung dịch cũng như trong tinh thể hiđrat $K[Mn(EDTA)].3H_2O$. Ta thấy rõ tính bền này khi so sánh thế oxi hóa-khử:

$$E_{\,[M\,n\,(EDTA)]^{-}/[M\,n\,(EDTA)]^{2-}}^{\,\,o}\,=\,0\,,8\,3\,V\,\,\,\text{v\'oi}\,\,E_{\,M\,n^{\,3+}/M\,n^{\,2+}}^{\,\,o}\,=\,1\,,5\,1\,V$$

Hợp CHẤT CỦA MANGAN(IV)

Mangan dioxit

Mangan đioxit (MnO_2) là chất bột màu đen có thành phần không hợp thức. Khi đun nóng nó phân hủy tạo thành các oxit thấp hơn:

$$MnO_2 \xrightarrow{>500^{\circ}C} Mn_2O_3 \xrightarrow{>900^{\circ}C} Mn_3O_4$$

Ở điều kiện thường, nó là oxit bền nhất trong các oxit của mangan, không tan trong nước và tương đối trơ.

Khi đun nóng, nó tan trong axit và kiểm như một oxit lưỡng tính. Khi tan trong dung dịch axit, nó không tạo nên muối kém bền của Mn⁴⁺ theo phản ứng trao đổi mà tác dụng như chất oxi hóa. Ví dụ nó tác dụng với dung dịch HCl đặc giải phóng khí clo:

$$MnO_2 + 4HCl = MnCl_2 + Cl_2 + 2H_2O$$

Người ta cũng có thể giả thiết rằng phản ứng mới đầu tạo ra $MnCl_4$ nhưng hợp chất này không bền phân hủy ngay thành $MnCl_2$ và Cl_2 . Khi tan trong axit sunfuric đặc, mangan đioxit tạo nên muối mangan(III) và giải phóng oxi. tương tự như trên, có thể coi phản ứng mới đầu tạo nên $Mn(SO_4)_2$ nhưng hợp chất này bị nước phân hủy hoàn toàn:

$$4Mn(SO_4)_2 + 2H_2O = 2Mn_2(SO_4)_3 + 2H_2SO_4 + O_2$$

Khi tan trong dung dịch KOH đặc nó tạo nên dung dịch màu xanh lam chứa các ion Mn(III) và Mn(V) vì trong điều kiện này ion Mn(IV) không tồn tại được:

$$2MnO_2 + 6KOH = K_3 MnO_4 + K_3 [Mn(OH)_6]$$

Từ dung dịch kiềm người ta đã tách được tinh thể hiđrat màu xanh của natri hipomanganat Na₃MnO₄. Đây là một trong số ít ởi hợp chất mangan(V) đã biết được. Hipomanganat chỉ tồn tại trong dung dịch kiềm mạnh và trong môi trường khác tự phân hủy:

$$2MnO_4^{3-} + 2H_2O \implies MnO_4^{2-} + MnO_2 + 4OH^{-}$$

Khi nấu chảy với chất kiềm hay oxit bazơ mạnh, nó tạo nên muối manganit.

Ví dụ:

$$MnO_2 + 2NaOH = Na_2MnO_3 + H_2O$$

 $MnO_2 + CaO = CaMnO_3$

Những manganit thu được có thể có thành phần khác nhau, ví dụ như Na₂MnO₃ (natri metamanganit), CaMnO₃ (canxi metamanganit màu đen), Ca₂MnO₄ (canxi orthomanganit màu đỏ gạch) hay CaMn₂O₅ (canxi đimanganit). Giống như trường hợp của titanat, manganit có cấu tạo của oxit hỗn hợp ví dụ như Na₂O.MnO₂, CaO.MnO₂, 2CaO.MnO₂ hay CaO.2MnO₂, trong đó ion Na⁺ hay ion Ca²⁺ và ion Mn⁴⁺ chiếm những lỗ trống tạo nên giữa những ion O²⁻ được gối ghém sít sao với nhau chứ không có những anion MnO₃²⁻, MnO₄⁴⁻ ...

 \mathring{O} nhiệt độ cao, MnO_2 có thể bị H_2 , CO, C khử thành kim loại. Huyền phù MnO_2 trong nước ở $0^{\circ}C$ tác dụng với khí SO_2 tạo thành mangan (II) đithionat:

$$MnO_2 + 2SO_2 = MnS_2O_6$$

và khi đun nóng tạo thành mangan(II) sunfat:

$$MnO_2 + SO_2 = MnSO_4$$

Khi nấu chảy với chất kiềm nếu có mặt chất oxi hóa như KNO₃, KClO₃ hay O₂, mangan đioxit bị oxi hóa thành manganat.

Ví du:

$$MnO_2 + KNO_3 + K_2CO_3 = K_2MnO_4 + KNO_2 + CO_2$$

 $2MnO_2 + O_2 + 4KOH = 2K_2MnO_4 + 2H_2O$

Mangan đioxit tồn tại trong thiên nhiên dưới dạng khoáng vật pirolusit. Pirolusit cũng như mangan đioxit nhân tạo là hợp chất của mangan có nhiều công dụng nhất trong thực tế. Ở dạng bột nhỏ, MnO_2 được dùng làm chất xúc tác cho phản ứng phân hủy $KClO_3$ và H_2O_2 , cho phản ứng oxi hóa NH_3 đến NO và biến axit axetic thành axeton. Mangan đioxit được đưa vào nguyên liệu nấu thủy tinh để làm mất màu lục của thuỷ tinh và truyền cho thủy tinh màu hồng hay màu đen (khi dùng lượng lớn MnO_2). Trong công nghiệp đồ gốm, MnO_2 được dùng để tạo màu nâu, đỏ hay đen cho men. Mangan đioxit là vật liệu không thể thiếu được của pin khỏ. Pirolusit là nguyên liệu để sản xuất feromangan.

Tùy theo yêu cầu về chất lượng, MnO_2 được điều chế theo nhiều phương pháp khác nhau ví dụ như nhiệt phân $Mn(NO_3)$, ở nhiệt độ ~ 300 °C:

$$Mn(NO_3)_2 = MnO_2 + 2NO_2$$

hay oxi hóa muối mangan(II) trong môi trường kiểm bằng Cl_2 , HOCl, Br_2 hay điện phân hỗn hợp dung dịch MnSO_4 và H_2SO_4 với điện cực và bình điện phân làm bằng chì:

$$MnSO_4 + 2H_2O \xrightarrow{dong diện} MnO_2 + H_2SO_4 + H_2$$

Khi được điều chế từ dung dịch, mangan đioxit thường tách ra ở dạng hiđrat với lượng nước biến đổi MnO₂.xH₂O ví dụ như MnO₂.2H₂O và MnO₂.H₂O thường được biểu diễn là Mn(OH)₄ hay H₄MnO₄ (axit orthomangano) và H₂MnO₃ (axit metamangano).

Muối magan (IV)

Số muối mangan(IV) không có nhiều. Cation Mn^{4+} bị thủy phân mạnh trong dung dịch nước tạo thành MnO_2 nhưng được làm bền hơn trong các phức chất.

Mangan tetraflorua (MnF₄) là chất rắn màu xanh xám, dễ phân hủy thành MnF₃ và F₂

nên là chất oxi hóa rất mạnh. Nó được tạo nên trong dung dịch khi hòa tan ${\rm MnO_2}$ trong dung dịch HF đậm đặc.

Mangan tetraclorua (MnCl₄) là kết tủa màu nâu đỏ hoặc đen tồn tại ở nhiệt độ thấp, phân hủy thành MnCl₂ và Cl₂ ở - 10° C, tan trong dung môi hữu cơ. Nó được điều chế bằng cách thêm hỗn hợp CHCl₃ và CCl₄ vào dung dịch màu lục được tạo nên khi sực khí HCl qua huyền phù MnO₂ trong ete ở -70° C.

Những tetrahalogenua này kém bền trong nước nhưng dễ kết hợp với halogenua kim loại kiểm tạo nên những phức chất có màu vàng và bền hơn như $M[MnX_5]$ và $M_2[MnX_6]$ (trong đó M = K, Rb, NH_4 và X = F, Cl).

Mangan disunfat $(Mn(SO_4)_2)$ là kết tủa màu đen tan trong axit sunfuric đặm đặc cho dung dịch màu nâu. Nó khá bền trong axit sunfuric nhưng bị nước phân hủy mạnh. Nó được tạo nên khi chế hóa hỗn hợp của $MnSO_4.4H_2O$ và bột $KMnO_4$ với dung dịch H_2SO_4 55% ở 50-60°C hoặc oxi hóa hỗn hợp dung dịch $MnSO_4$ và H_2SO_4 bằng PbO_2 ở 50 - 60°C:

$$3MnSO_4 + 2KMnO_4 + 8H_2SO_4 = 5Mn(SO_4)_2 + K_2SO_4 + 8H_2O_4$$

 $MnSO_4 + PbO_2 + 2H_2SO_4 = Mn(SO_4)_2 + PbSO_4 + 2H_2O_4$

HƠP CHẤT CỦA MANGAN(VI)

Mangan(VI) chỉ biết được trong ion manganat (MnO_4^{2-}) có màu lục thẫm. Người ta đã tách được tinh thể muối manganat của kim loại kiềm, amoni, kim loại kiềm thổ, chì và catmi.

Natri manganat (Na₂MnO₄) và kali manganat (K₂MnO₄) là những chất ở dạng tinh thể màu lục - đen, phân hủy trên 500°C:

$$2K_1 M_0^{+6} O_4 = 2K_2 M_0^{+4} O_3 + O_2$$

Tinh thể hiđrat Na₂MnO₄.10H₂O đồng hình với Na₂SO₄.10H₂O.

Manganat kim loại kiểm tan và bền trong dung dịch kiềm nhưng tự phân hủy trong các môi trường trung tính và axit như đã thấy trong sơ đồ thế oxi hóa - khử trên đây:

$$3 \text{ MnO}_4^{2-} + 2 \text{H}_2 \text{O} = 2 \text{ MnO}_4^{-} + \text{MnO}_2 + 4 \text{ OH}^{-}$$

Bởi vậy dung dịch manganat trong kiềm khi được pha loãng bằng nước hoặc khi để lâu trong không khí chứa CO_2 , màu lục thẫm trở thành màu tím (của MnO_4^-) và kết tủa đen xuất hiện.

Muối manganat là chất oxi hóa mạnh, phản ứng với những chất khủ ở trong dung dịch xẩy ra tương tự như pemanganat, nhưng với chất oxi hóa mạnh hơn, manganat thể hiện tính khủ.

Ví du:

$$2K_2MnO_4 + Cl_2 = 2KMnO_4 + 2KCl$$

Kali manganat là sản phẩm trung gian dùng để điều chế kali pemanganat. Nó được tạo nên bằng cách nấu chảy bột pirolusit với KOH hay K_2CO_3 khi có mặt oxi không khí:

$$-2MnO_2 + 4KOH + O_2 = 2K_2MnO_4 + 2H_2O$$

Hiệu suất của phản ứng này được nâng cao khi thay O_2 bằng KCl O_3 hay KNO $_3$. Tuy nhiên, những phản ứng này đều không xảy ra hoàn toàn vì trong hỗn hợp phản ứng luôn luôn có những cân bằng giữa những hợp chất của mangan (IV, V và VI).

HOP CHẤT CỦA MANGAN(VII)

Oxit pemanganic

Oxit pemanganic (Mn₂O₇) ở nhiệt độ thấp là chất ở dạng tinh thể màu lục thẫm, bên ở dưới -5°C, nóng chảy ở 6°C biến thành chất lỏng giống dầu có màu đỏ thẫm trong ánh sáng phản chiếu. Tinh thể có kiến trúc phân tử giống với Cl₂O₇. Ở 10°C nó phân hủy nổ:

$$Mn_2O_7 = 2MnO_2 + O_3$$

Nó tan trong nước tạo thành dung dịch axit pemanganic nên còn được gọi là anhiđrit pemanganic:

$$Mn_2O_7 + H_2O = 2HMnO_4$$

Anhiđrit pemanganic là chất oxi hóa rất mạnh, tác dụng với nhiều chất vô cơ và hữu cơ, ví dụ như rượu và ete bốc cháy ngay khi tiếp xúc với nó.

Ví du:

$$2Mn_2O_7 + 2(C_2H_5)_2O + 9O_2 = 4MnO_2 + 8CO_2 + 10H_2O$$

Thí nghiệm sau đây chứng minh tác dụng của $\mathrm{Mn_2O_7}$ với $\mathrm{C_2H_5OH}$: lấy một ít axit sunfuric đặc vào đáy ống thử (loại chịu nhiệt), thêm cẩn thận rượu etylic vào ống thử (cho chảy theo thành ống) như thế nào để lớp rượu và lớp axit không trọn lẫn vào nhau, thả nhẹ một hai tinh thể $\mathrm{KMnO_4}$ vào ống thử. Tinh thể đi xuyên qua lớp rượu đến lớp axit, tác dụng với axit biến thành $\mathrm{Mn_2O_7}$ và oxit này tác dụng với rượu ở ranh giới tiếp xúc gây nên những tia lửa rực sáng và đẹp.

Anhiđrit pemanganic được điều chế bằng tác dụng của axit sunfuric đặc với tinh thể KMnO₄:

$$KMnO_4 + H_2SO_4 = HMnO_4 + KHSO_4$$

$$2HMnO_4 = Mn_2O_7 + H_2O$$

Nếu lấy dư axit sunfuric đặc sẽ được dung dịch trong suốt màu lục và kém bền. Phương pháp nghiệm lạnh chỉ cho thấy trong dung dịch đó có mangan(VII) ở dạng cation:

$$KMnO_4 + 3H_2SO_4 = K^+ + MnO_3^+ + H_3O^+ + 3HSO_4^-$$

Phản ứng này cho thấy tính lưỡng tính của HMnO4.

Axit pemanganic

Axit pemanganic (HMnO₄) chỉ biết được trong dung dịch nước, có màu tím-đỏ, tương đối bền trong dung dịch loãng nhưng phân hủy khi dung dịch có nồng độ trên 20%:

$$2HMnO_4 = 2MnO_2 + O_3 + H_2O$$

Axit pemanganic là axit mạnh, muối của nó là pemanganat. Muối pemanganat bền hơn axit, đồng hình với peclorat nhưng dễ phân hủy hơn khi đun nóng.

Những hiđrat tinh thể như Li $MnO_4.3H_2O$, Na $MnO_4.3H_2O$, Mg(MnO_4)₂.6 H_2O , Ca(MnO_4)₂.5 H_2O , Sr(MnO_4)₂.3 H_2O tan nhiều trong nước trong khi các muối khan NH_4MnO_4 , K MnO_4 , Rb MnO_4 , Cs MnO_4 và Ba(MnO_4)₂ tan ít hơn.

Axit pemanganic và muối pemanganat đều là chất oxi hóa mạnh. Axit pemanganic được tạo nên khi hòa tan $\mathrm{Mn_2O_7}$ trong nước đã được làm lạnh hoặc cho muối pemanganat tác dụng với dung dịch axit loãng.

Ví dụ:

$$Ba(MnO_4)_2 + H_2SO_4 = BaSO_4 + 2HMnO_4$$

Kali pemanganat

Kali pemanganat (KMnO₄) là chất ở dạng tinh thể màu tím-đen, đồng hình với KClO₄, BaSO₄ và BaCrO₄. Nó tan trong nước cho dung dịch màu tím-đỏ, có độ tan biến đổi tương đối nhiều theo nhiệt độ nên tinh chế được dễ dàng khi kết tinh lại. Ngoài ra nó còn có thể tan trong amoniac lỏng, pyriđin, rượu và axeton.

Trên 200°C, nó phân hủy theo phản ứng:

$$2KMnO_4 = K_2MnO_4 + MnO_2 + O_2$$

Trên 500°C, nó phân hủy theo phản ứng:

$$4KMnO_4 = 2K_2MnO_3 + 2MnO_2 + 3O_2$$

Kali pemanganat có tính oxi hóa mạnh nên được dùng làm chất oxi hóa trong tổng hợp

vô cơ và hữu cơ, dùng để tẩy trắng vải, đầu và mỡ, sát trùng trong y học và đời sống. Khả năng oxi hóa của $KMnO_4$ phụ thuộc mạnh vào môi trường của dung dịch:

8.8

$$MnO_4^- + 8H^+ + 5e = Mn^{2+} + 4H_2O,$$
 $E^\circ = 1,51V$
 $MnO_4^- + 2H_2O + 3e = MnO_2 + 4OH^-,$ $E^\circ = 0,588V$
 $MnO_4^- + e = MnO_4^{2-},$ $E^\circ = 0,56V$

Trong dung dịch axit, ion MnO_4^- có thể oxi hóa nhiều chất như HCl, H_2S , PH_3 , Na_2SO_3 , $FeSO_4$, $H_2C_2O_4$, HCOOH, HNO₂, H_3AsO_3 , H_2O_2 , hiđro mới sinh và biến thành ion Mn^{2+} . Nhiều phản ứng của các chất đó đã được trình bày khi xét các chất, ở đây chỉ nêu thêm một số phản ứng:

$$\begin{array}{lll} 2KMnO_4 + 5Na_2SO_3 + 3H_2SO_4 & = & 2MnSO_4 + K_2SO_4 + 5Na_2SO_4 + 3H_2O \\ 8KMnO_4 + 5PH_3 + 12H_2SO_4 & = & 8MnSO_4 + 4K_2SO_4 + 5H_3PO_4 + 12H_2O \\ 2KMnO_4 + 5H_2C_2O_4 + 3H_2SO_4 & = & 2MnSO_4 + K_2SO_4 + 10CO_2 + 8H_2O \\ 2KMnO_4 + 5HCOOH + 3H_2SO_4 & = & 2MnSO_4 + K_2SO_4 + 5CO_2 + 8H_2O \\ 2KMnO_4 + 8H_2SO_4 + 5Zn & = & 2MnSO_4 + K_2SO_4 + 5ZnSO_4 + 8H_2O \\ \end{array}$$

Trong dung dịch rất loãng, ion MnO₄ vẫn có màu rõ rệt trong khi ion Mn²⁺ không có màu cho nên sự xuất hiện hay biến mất của màu đó cho phép xác định điểm cuối của thí nghiệm chuẩn độ. Dựa vào đó, phòng thí nghiệm hóa học dùng KMnO₄ để định lượng các chất và phương pháp phân tích đó gọi là *phương pháp chuẩn độ pemanganat*. Phương pháp cho phép định lượng những chất khử như muối sunfit, muối sắt(II), axit oxalic, nước oxi, v.v... và cả những chất oxi hóa. Ví dụ muốn định lượng chất oxi hóa, người ta cho thêm vào chất đó một lượng dư chất khử rồi dùng dung dịch KMnO₄ đã axit hóa bằng axit sunfuric để xác định lượng dư của chất khử đó. Ngoài ra phương pháp chuẩn độ pemanganat còn cho phép định lượng một số chất không phải là chất khử và chất oxi hóa. Ví dụ như để định lượng ion Ca²⁺ trong dung dịch, người ta dùng axit oxalic để kết tủa hết ion Ca²⁺ dưới dạng kết tủa rất ít tan CaC₂O₄; lọc lấy kết tủa, rửa sạch, đem hòa tan vào dung dịch H₂SO₄ loãng rồi dùng dung dịch KMnO₄ để chuẩn độ lượng axit oxalic được giải phóng và suy ra lượng ion Ca²⁺.

Cần lưu ý rằng ngay khi không có chất khử, dung dịch $KMnO_4$ không bền có thể phân hủy theo phản ứng:

$$.4 \,\mathrm{MnO_4^-} + 4 \,\mathrm{H^+} = 3 \,\mathrm{O_2} + 4 \,\mathrm{MnO_2} + 2 \,\mathrm{H_2O}$$

Phản ứng xảy ra chậm trong dung dịch axit nhưng khá rõ rệt. Trong dung dịch trung tính hay kiểm yếu và trong bóng tối, phản ứng xảy ra gần như không đáng kể. Ánh sáng thúc đẩy phản ứng phân hủy đó cho nên cần đựng dung dịch KMnO₄ chuẩn trong lọ thủy tinh có màu thẩm.

Trong những dung dịch trung tính, axit yếu hay kiềm yếu, ion MnO_4^- bị khử thành MnO_2 .

Ví dụ:

$$2KMnO_4 + 3Na_2SO_3 + H_2O = 2MnO_2 + 2KOH + 3Na_2SO_4$$

 $2KMnO_4 + 3H_2O_2 = 2MnO_2 + 2KOH + 2H_2O + 3O_2$
 $2KMnO_4 + 3MnSO_4 + 2H_2O = 5MnO_2 + K_2SO_4 + 2H_2SO_4$

Phản ứng sau cùng này nhắc nhở chúng ta khi áp dụng phương pháp chuẩn độ pemanganat luôn luôn dùng một lượng axit tương đối dư để ngăn cản kết tủa MnO_2 xuất hiện.

Trong dung dịch kiềm mạnh và khi có dư chất khử, ion MnO_4^- bị khử đến MnO_4^{2-} .

Ví dụ:

$$2KMnO_4 + K_2SO_3 + 2KOH = 2K_2MnO_4 + K_2SO_4 + H_2O$$

 $2KMnO_4 + K_2C_2O_4 + 2KOH = 2K_2MnO_4 + 2KHCO_3$

Trong dung dịch kiểm đặc và khi không có chất khử, ion MnO_4^- tự phân hủy theo phản ứng:

$$4KMnO_4 + 4KOH = 4K_2MnO_4 + O_2 + 2H_2O$$

Bởi vậy phòng thí nghiệm hóa học thường dùng KMnO $_4$ trong dung dịch KOH đặc để làm hỗn hợp rửa dụng cụ thủy tinh.

Nguyên liệu trung gian để điều chế $KMnO_4$ là K_2MnO_4 . Để chuyển K_2MnO_4 thành $KMnO_4$ người ta có thể dùng khí Cl_2 hay khí CO_2 nhưng những phương pháp này đều không thực tế.

Phương pháp được dùng ngày nay trong công nghiệp là điện phân dung dịch K_2MnO_4 với các điện cực bằng thép:

$$2K_2MnO_4 + 2H_2O \xrightarrow{dong diện} 2KMnO_4 + 2KOH + H_2$$

Khả năng oxi hóa và độ axit của môi trường

Qua những sơ đồ thế oxi hóa-khử vừa trình bày trên đây của mangan, chúng ta nhận thấy:

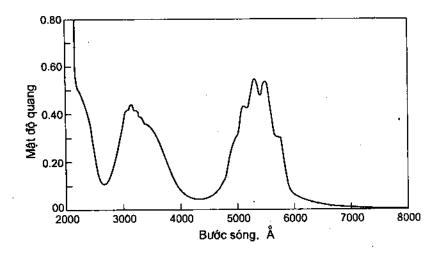
Ion MnO_4^- bị khử đến Mn^{2+} trong môi trường axit, đến MnO_2 trong môi trường trung tính và đến MnO_4^{2-} trong môi trường kiềm.

Khả năng oxi hóa của các ion MnO_4^- và MnO_4^{2-} đến MnO_2 trong môi trường axit (với các thế là +1,70V và 2,26V tương ứng) đều lớn hơn trong môi trường kiểm (với các thế là +0,58V và +0,6V tương ứng).

Ngay trong môi trường axit, khi tăng nồng độ của ion H^* hoạt tính oxi hóa của ion MnO_4^- cũng tăng lên tuân theo phương trình Nernst:

$$E_{MnO_4/Mn^{2+}} = E^{\sigma} - \frac{0.059}{5} \lg \frac{[Mn^{2+}]}{[MnO_4][H^+]^8}$$

Vậy ảnh hưởng của ion H^+ đến hoạt tính oxi hóa của các ion MnO_4^- và MnO_4^{2-} có cơ chế như thế nào ?


Có lẽ rằng trong môi trường axit , những anion MnO_4^- và MnO_4^{2-} đã được proton hoá tạo thành phân tử $HMnO_4$, anion $HMnO_4^-$ và có thể cả phân tử H_2MnO_4 (giả thiết). Những phân tử và anion một mặt có cấu tạo kém đối xứng hơn so với anion tứ diện đều MnO_4^- hay MnO_4^{2-} nên dễ tiếp xúc hơn với chất khử và quá trình phản ứng được đẩy mạnh, mặt khác chúng đều kém bền, dễ mất nước tạo thành anhiđrit có cấu tạo còn kém đối xứng hơn nữa so với phân tử axit hay anion tứ diện đều cho nên càng dễ tiếp xúc hơn với chất khử và phản ứng càng được đẩy mạnh hơn. Đấy là lí do chung làm cho oxiaxit có tính oxi hóa mạnh hơn muối của nó và anhiđrit axit có tính oxi hóa mạnh hơn axit ở cùng điều kiện.

Lập luận trên đây cho phép hiểu được tại sao dung dịch loãng của H_2SO_3 , của HNO_2 có khả năng oxi hóa mạnh hơn dung dịch loãng của H_2SO_4 , của HNO_3 (tương ứng), ví dụ như trong dung dịch loãng, H_2SO_3 oxi hóa được H_2S giải phóng lưu huỳnh trong khi H_2SO_4 không tác dụng và HNO_2 oxi hoá được I giải phóng iot trong khi HNO_3 không tác dụng. Nguyên nhân là H_2SO_3 và HNO_2 đều kém bền, dễ mất nước tạo thành SO_2 và NO, NO_2 có cấu tạo kém đối xứng hơn các anion SO_3^2 và NO_2^- trong khi H_2SO_4 và HNO_3 đều bền, khó phân hủy hơn. Một cách giải thích khác có nội dung gần tương tự là hoạt tính oxi hóa chỉ được gây nên bởi phân tử không phân lì (có cấu tạo kém đối xứng hơn anion) của oxiaxit mạnh, ở đây là H_2SO_4 và HNO_3 mà những phân tử đó thực tế không tồn tại trong dung dịch loãng.

Phổ chuyển điện tích

Ion MnO_4^- có màu tím đậm (Hình 36), còn ion CrO_4^{2-} có màu vàng đậm, hệ số hấp thụ mol của chúng là vào khoảng $40000 \div 50000$.

Những ion đó theo thuyết trường tinh thể cũng được xem là những phức chất của kim loại chuyển tiếp. Cường độ màu lớn của chúng không thể sinh ra bởi sự chuyển dời electron d-d vì trong trường hợp này, ion trung tâm là Mn⁷⁺ hay Cr⁶⁺ (không có electron d). Theo thuyết obitan phân tử, màu đậm đó sinh ra bởi sự chuyển dời electron từ phối tử O đến nguyên từ trung tâm Mn hay Cr làm thay đổi điện tích của chúng và sự chuyển dời electron như vậy được gọi là sự chuyển điện tích.

Hình 36. Phổ hấp thụ của dung dịch KMnO4

Thật vậy, khi nhận năng lượng của bức xạ, electron π định chỗ chủ yếu ở các nguyên tử O trong ion MnO_4^- hay ion CrO_4^{2-} chuyển dời đến obitan phân tử π_d^* trống định chỗ chủ yếu ở nguyên tử kim loại Mn hay Cr. Sự chuyển dời này không bị ngăn cấm bởi các quy tắc lọc lựa của hóa học lượng tử nên dải hấp thụ có cường độ rất lớn, nghĩa là cho màu đậm.

Một số hợp chất ion là chất màu, màu của chúng được gây nên bởi sự chuyển điện tích. Bảng 16 trình bày sự chuyển điện tích giữa các ion của các chất màu đó.

Bảng 16 Sự chuyển dời các electron giữa các obitan

Chất màu	Sự chuyển điện tích	Các obitan tham gia
Vàng catmi CdS	$Cd^{2+}, S^{2-} \rightarrow Cd^+, S^-$	$S, p_{\pi} \rightarrow Cd, 5s$
Xinaba (thần sa) HgS	$Hg^{2+}, S^{2-} \rightarrow Hg^+, S^-$	$S, p_{\pi} \rightarrow Hg, 6s$
Auripimen As ₂ S ₃ hay reanga (hùng hoàng) As ₄ S ₄	$As^{3+}, S^{2-} \rightarrow As^{2+}, S^{-}$	$S, p_{\pi} \rightarrow As, 4s \text{ hay } 4p$
Vàng Naple Pb ₃ (SbO ₄) ₂	$Sb^{5+}, O^{2-} \rightarrow Sb^{4+}, O^{-}$	$O, p_{\pi} \rightarrow Sb, 5s \text{ hay } 5p$
Maxicot PbO	$Pb^{2+}, O^{2-} \rightarrow Pb^{+}, O^{-}$	$O, p_{\pi} \rightarrow Pb, 6s$
Vàng crom PbCrO ₄	$Cr^{6+}, O^{2-} \rightarrow Cr^{5+}, O^{-}$	$O, p_n \rightarrow Cr, 3d$
Oxit sắt đỏ và oxit sắt vàng Fe ₂ O ₃	Fe^{3+} , $O^{2-} \rightarrow Fe^{2+}$, O^{-}	$O, p_{\pi} \rightarrow Fe, 3d$

Đa số chất màu đó có màu đỏ và màu vàng. Sở dĩ như vậy là vì dải chuyển điện tích chính nằm trong vùng tử ngoại. Nếu dải chuyển dịch sang vùng năng lượng bé hơn, sự hấp thụ sẽ xảy ra trong vùng chàm tím và gây nên các màu rất đậm: đỏ, da cam và vàng của chất màu.

Qua các chất màu trên đây, nhận thấy phổ chuyển điện tích là đặc trưng đối với những nguyên tử kim loại như Cd, Hg, As, Pb, Fe và những nguyên tử không-kim loại như O, S (cả Se, Br và KI). Những anion O^{2^-} , S^{2^-} , I^- ...có vỏ electron để biến dạng nên có khả năng chuyển dời electron. Mặt khác, các cation kim loại Cd^{2+} , Hg^{+2} , Pb^{2+} , Fe^{3+} là những ion có obitan nguyên tử trống electron. Sự chuyển điện tích thường được coi như là tương tác π cho-nhận. Các nhà hóa học Nga chuyên nghiên cứu về *sự cực hóa ion* giải thích định tính sự xuất hiện màu của những hợp chất ion trên đây bằng sự cực hóa lẫn nhau giữa các cation và anion.

HỌP CHẤT CỦA RENI(III)

Reni(III) halogenua

Hai hợp chất đã được nghiên cứu kĩ là trime Re_3Cl_9 và Re_3Br_9 . Tinh thể Re_3Cl_9 có màu đỏ thẫm, nóng chảy ở 727°C và sôi ở 827°C, tinh thể Re_3Br_9 có màu đỏ nâu, nóng chảy ở 627°C và sôi ở 727°C.

Đây là những hợp chất claste điển hình, hơi của chúng gồm những phân tử Re_3X_9 có cấu tạo:

trong đó 3 nguyên tử Re liên kết với nhau tạo thành hình tam giác đều với khoảng cách Re –Re là 2,48 Å, ngắn hơn khoảng cách Re–Re trong tinh thể kim loại reni (2,75Å) nên liên kết kim loại–kim loại ở đây rất bền và là liên kết đôi Re = Re. Chính vì vậy những phân tử Re_3X_9 có thể tồn tại trong hơi của chất ở nhiệt độ cao. Trên nhiệt độ sôi, chúng phân hủy thành Re kim loại và halogen, vì vậy người ta thường mạ reni lên kim loại khác bằng cách nhiệt phân hơi Re_3Cl_9 trong khí quyển nitơ.

Trong tinh thể , những phân tử Re_3X_9 liên kết với nhau qua cầu nối X , cầu nối Re-X-Re này cũng có trong bản thân phân tử Re_3X_9 .

Tinh thể Re_3X_9 có thể tan trong nước cho dung dịch màu đỏ, trong đó chúng không tác dụng với ion Ag^+ tạo thành kết tủa AgX vì liên kết Re-X không phải là liên kết ion mà là cộng

* 60 B

hóa trị. Trime Re_3X_9 còn có thể tan trong những dung môi hữu cơ như rượu, ete và axeton cho dung dịch màu đỏ thẫm.

Khi tan trong nước, chúng bị thủy phân tạo thành hiđrat $Re_2O_3.xH_2O$ là những tinh thể màu đen, ít tan trong nước và dễ bị oxi hóa thành $ReO_2.xH_2O$ ở trong nước. Những hiđrat $Re_2O_3.xH_2O$ cũng được tạo nên khi chúng tác dụng với dung dịch kiềm.

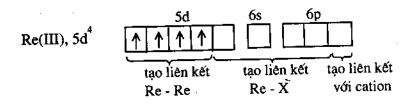
Ở 200 - 300°C, Re₃Cl₉ và Re₃Br₉ bị khí H₂ khử đến kim loại.

Chúng có thể được điều chế bằng cách nhiệt phân ReX_5 hay $Ag_3[ReX_6]$ (ở đây X = CI, Br) trong khí quyển nitơ ở nhiệt độ vừa phải.

Ví dụ:

$$3ReCl_5 = Re_3Cl_9 + 3Cl_2$$

 $6Ag_2[ReBr_6] = 2Re_3Br_9 + 12AgBr + 3Br_2$


Phức chất của reni (III)

Những trime Re_3X_9 tan trong dung dịch HX đặc (X = Cl, Br) cho dung dịch có thành phần chưa xác định được chính xác nhưng khi được thêm những cation như K⁺, Rb⁺ và Cs⁺ thì tách ra tinh thể màu đỏ ít tan trong nước của những hợp chất $M_3[Re_3X_{12}]$, $M_2[Re_3X_{11}]$ và $M[Re_3X_{10}]$ là sản phẩm kết hợp của Re_3X_9 với ba, hai và một phân tử MX.

Khi khử ion ReO_4^- bằng H_2 hay H_3PO_2 trong dung dịch HCl hoặc HBr tạo nên những anion phức $[Re_2X_8]^{2-}$ rất khác thường và có cấu tạo:

Trong đó độ dài của liên kết Re-Re là 2,24Å bị rút ngắn hơn nhiều so với độ dài của liên kết trong kim loại. Bởi vậy, người ta cho rằng liên kết kim loại – kim loại trong anion phức đó là liên kết bốn Re \equiv Re, gồm một liên kết σ , hai liên kết π và một liên kết δ .

Nếu thừa nhận trục z là trục nối giữa hai nguyên tử Re thì liên kết σ được tạo nên nhờ sự che phủ của hai obitan d_{z^2} , hai liên kết π được tạo nên bởi sự che phủ của hai obitan d_{xy} và của hai obitan d_{yz} và liên kết δ được tạo nên bởi sự che phủ của hai obitan d_{xy} .

Liên kết Mo \equiv Mo trong đime molipđen(II) axetat vẫn được giữ lại trong anion phức $[Mo_2Cl_8]^{4-}$, được tạo nên khi đime đó tác dụng với dung dịch HCl $\stackrel{\circ}{\sigma}$ 0°C. Anion $[Mo_2Cl_8]^{4-}$ có cấu tạo giống anion $[Re_2Cl_8]^{2-}$. Tuy nhiên, hợp chất của tecneti là $(NH_4)_3[Tc_2Cl_8]$ có anion tương tự $[Re_2Cl_8]^{2-}$ nhưng người ta không biết được tại sao số oxi hóa Tc lai là +2.5.

HOP CHẤT CỦA TECNETI(IV) VÀ RENI(IV)

Tecneti và reni dioxit

Giống với MoO_2 , các đioxit TeO_2 và ReO_2 có kiến trúc tinh thể kiểu rutin nhưng bị sai lệch chút ít vì trong đó có liên kết kim loại - kim loại . Chúng là chất bột màu đen. TeO_2 rất bền với nhiệt, có thể thăng hoa ở 1000° C còn ReO_2 kém bền hơn, phân hủy ở 800° C theo phản ứng:

$$7 \text{ ReO}_2 \implies 2 \text{Re}_2 \text{O}_7 + 3 \text{ Re}$$

Khi đun nóng trong không khí, chúng bị oxi hóa thành oxit cao Tc₂O₇ và Re₂O₇.

Ở nhiệt độ cao, chúng bị khí H₂ khử thành kim loại.

Ví dụ:

$$ReO_2 + 2H_2 = Re + 2H_2O$$

Khi được tạo nên từ dung dịch, các đioxit thường ở dạng hiđrat $TcO_2.2H_2O$ và $ReO_2.2H_2O$. Khi đun nóng, trong chân không, hiđrat mất nước biến thành đioxit khan, Những hiđrat này hoạt động hơn đioxit khan, chúng tan trong dung dịch axit và dung dịch kiềm. Đioxit ReO_2 tan trong kiềm nóng chảy khi không có không khí thành muối renit:

Ví du:

$$ReO_2 + 2NaOH = Na_2 ReO_3 + H_2O$$

Nếu có mặt NaReO₄, nó sẽ tạo nên muối hiporenat:

$$2ReO_2 + NaReO_4 + 2NaOH = 3NaReO_3 + H_2O$$

Khi tác dụng với những chất oxi hóa như HNO_3 , H_2O_2 chúng bị oxi hóa thành $HTeO_4$ và $HReO_4$.

Đioxit TcO, được điều chế bằng cách nhiệt phân NH₄TcO₄:

$$2NH_4TcO_4 = 2TcO_2 + 4H_2O + N_2$$

Đioxit ReO_2 được điều chế bằng cách nhiệt phân NH_4ReO_4 hoặc khử Re_2O_7 hay NH_4ReO_4 bằng khí hiđro hay reni kim loại khi đun nóng.

Ví dụ:

$$Re_2O_7 + 3H_2 = 2ReO_2 + 3H_2O$$

 $2NH_4ReO_4 + 3H_2 = 2ReO_2 + 2NH_3 + 4H_2O$

Tecneti và reni tetrahalogenua

Tecneti tetraclorua (TcCl₄) là chất rắn màu đỏ được tạo nên khi CCl₄ tác dụng với Tc_2O_7 ở 400°C, trên nhiệt độ đó nó phân hủy thành nguyên tố. Reni tetraflorua (ReF₄) là chất rắn màu lục thẫm, nóng chảy ở 124,5°C và sôi ở 795°C, được tạo nên khi khử ReF₆ bằng khí H₂ ở 200°C hoặc bằng reni kim loại ở 500°C. Reni tetraclorua (ReCl₄) là chất rắn màu đen, ở dạng trime Re_3Cl_{12} , được tạo nên khi $Re_2O.2H_2O$ tác dụng với $SOCl_2$.

Tất cả những tetrahalogenua trên đây đều bị thủy phân khi tan trong nước.

Phức chất của tecneti(IV) và reni(IV) với halogen

Reni tetraflorua ReF_4 tan trong dung dịch HF 40% tạo nên dung dịch màu lục thẩm, khi thêm vào đó muối KF thì lắng xuống những tinh thể màu lục $K_2[ReF_6]$.

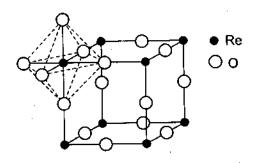
Đioxit ReO_2 hay trime Re_3Cl_{12} tan trong dung dịch HCl tạo nên $H_2[ReCl_6]$ ở trong dung dịch là một axit mạnh. Khi thêm muối KCl vào dung dịch đặm đặc của axit đó, thu được những tinh thể màu vàng lục $K_2[ReCl_6]$ có kiến trúc giống $K_2[PtCl_6]$.

Người ta cũng đã biết những phức chất tương tự của tecneti $K_2[TcX_6]$ (ở đây X=F, Cl, Br) và của reni $M_2[Re\,X_6]$ (ở đây M=K, Rb, Cs và X=F, Cl, Br, I).

Những phức chất trên đây tạo nên hiđrat $TcO_2.2H_2O$ hay $ReO_2.2H_2O$ khi tác dụng với dung dịch kiềm và tạo nên kết tủa đen ít tan TcS_2 hay ReS_2 khi tác dụng với dung dịch H_2S .

Tất cả những phúc chất $M_2[ReX_6]$ hay $M_2[TeX_6]$ đều có thể điều chế được theo một phương pháp chung là dùng muối MX để khử $MReO_4$ hay $MTeO_4$ trong dung dịch HX đặc.

Ví dụ:


$$2NH_4TcO_4 + 6KI + 16HCl = 2K_2[TcCl_6] + 3I_2 + 2NH_4Cl + 2KCl + 8H_2O$$

 $2KReO_4 + 6KI + 16HCl = 2K_2[ReCl_6] + 3I_2 + 4KCl + 8H_2O$

HỘP CHẤT CỦA TECNETI(VI) VÀ RENI(VI)

Số hợp chất này có nhiều hơn so với hợp chất của mangan(VI).

· Tecneti và reni trioxit

Tecneti trioxit TcO₃ là chất rắn màu đỏ tạo nên khi đun nóng TcO₃Br nhưng chưa được nghiên cứu nhiều. Được nghiên cứu kĩ hơn là reni trioxit ReO₃. Nó là chất rắn màu đỏ, nóng chảy ở 160°C. Nó có kiến trúc của tinh thể lập phương, trong đó những nguyên tử Re nằm ở các đỉnh còn những nguyên tử O nằm ở điểm giữa các cạnh của lập phương và như vậy bao quanh mỗi nguyên tử Re là sáu nguyên tử O (Hình 37).

Hình 37. Kiến trúc của tinh thể ReO3

Nhiệt độ nóng chảy tương đối thấp của reni trioxit chứng tỏ tinh thể có mạng lưới phân tử. Thật vậy, liên kết Re-O là liên kết cộng hóa trị. Tuy nhiên những nghiên cứu kĩ về kiến trúc cho thấy trong trioxit không có những nhóm ReO₃ mà bao gồm những bát diện đều ReO₆ liên kết với nhau qua những đỉnh O chung. Có lẽ rằng khi đun nóng, kiến trúc lập phương đối xứng của trioxit để bị sai lệch, những liên kết có độ dài khác nhau xuất hiện và khi nóng chảy những liên kết có độ dài lớn nhất bị đứt, trioxit biến sang dạng polime bậc thấp (ReO₃), rồi sang monome ReO₃.

Trioxit ReO₃ bền trong không khí ở 110° C, trên nhiệt độ đó nó bị oxi hóa thành Re₂O₇. Khi đun nóng trong chân không ở trên 300°C, nó phân hủy thành ReO₂ và Re₂O₇.

Reni trioxit không tan trong nước, dung dịch loãng của HCl và H_2SO_4 và dung dịch kiểm loãng nhưng tan trong kiểm nóng chảy tạo thành renat:

Ví dụ:

$$ReO_3 + 2NaOH = Na_2ReO_4 + H_2O$$

Reni trioxit tan trong axit nitric biến thành axit perenic:

$$ReO_3 + HNO_3 = HReO_4 + NO_2$$

Chú ý rằng tất cả các hợp chất của reni (III, IV, V và VI) đều bị oxi hóa bởi HNO₃ biến thành HReO₄.

Reni trìoxit được điều chế bằng cách đun nóng (không có mặt không khí) hỗn hợp ${\rm ReO_2}$ và ${\rm Re_2O_7}$ ở 145°C hay hỗn hợp ${\rm Re}$ kim loại và ${\rm Re_2O_7}$ ở 300°C:

$$ReO_2 + Re_2O_7 = 3ReO_3$$

 $Re + 3Re_2O_7 = 7ReO_3$

Axit renic

Axit renic (H_2ReO_4) chỉ biết được trong dung dịch nước khi dùng hiđro hoạt động khử dung dịch $HReO_4$. Dung dịch axit renic có màu vàng-đỏ nhạt và rất kém bền.

Renat là muối của axit renic. Người ta đã biết được renat của natri, kali và bari. Muối renat có màu lục, bền hơn axit renic nhưng vẫn kém bền, tự phân hủy dễ dàng khi được tạo nên trong dung dịch nước.

Ví du:

$$3Na_{2}ReO_{4} + 2H_{2}O = 2NaReO_{4} + ReO_{2} + 4NaOH$$

Khi nấu chảy ở 500°C một hỗn hợp gồm NaReO₄, ReO₂ và NaOH, thu được muối natri hiporenat (NaReO₃), khi để nguội muối đó bị oxi hóa thành renat (Na₂ReO₄) kém bền. Bari renat (BaReO₄) bền hơn Na₂ReO₄, có thể tách được bằng cách dùng rượu rửa hỗn hợp sản phẩm thu được sau khi nấu chảy hỗn hợp gồm Ba(ReO₄)₂, ReO₂ và NaOH ở 500°C:

$$Ba(ReO_4)_2 + ReO_2 + 4NaOH = BaReO_4 + 2Na_2ReO_4 + 2H_2O$$

Tecneti và reni hexahalogenua

Tecneti hexahalogenua (TcF₆) là tinh thể vàng chói, nóng chảy ở 33,4°C và sôi ở 55,3°C, tecneti hexaclorua (TcCl₆) là chất rắn màu lục thẫm rất dễ nóng chảy, không bền với nhiệt, dễ phân hủy thành TcCl₄ và Cl₂. Chúng được tạo nên khi khí halogen tác dụng với tecneti kim loại ở 400°C. Reni hexaflorua (ReF₆) là chất rắn màu vàng nhạt, nóng chảy ở 18,7°C, sôi ở 35,6°C, tác dụng với SiO₂ (cả thủy tinh) ở 30°C theo phản ứng:

$$3ReF_6 + 3SiO_2 = ReF_4 + 2ReO_3F + 3SiF_4$$

và được tạo nên khi khí F_2 (không có oxi) tác dụng với reni kim loại ở 125°C.

Reni hexaclorua (ReCl₆) là chất rắn màu lục-nâu, nóng chảy ở ~22°C, được tạo khi khí Cl₂ (không có oxi) tác dụng với reni kim loại ở 600°C trong khí quyển nitơ.

Tất cả các hexahalogenua trên đây đều bị phân hủy trong nước.

Ví du:

$$3ReCl_6 + 10H_2O = 2HReO_4 + ReO_2 + 18HCl$$

Khi khí F_2 tác dụng với Re kim loại nếu có mặt khí O_2 , sẽ thu được những oxoflorua như Re OF_4 (bột màu xanh, nóng chảy ở 38.7° C và sôi ở 62.7° C) và Re O_2F_6 (bột màu trắng nóng chảy không phân hủy ở 156° C). Bản thân Re F_6 khi đun nóng cũng tác dụng với oxi tạo nên những oxoflorua như $\stackrel{+7}{Re}O_2F_3$ và $\stackrel{+7}{Re}OF_5$ còn ReCl $_6$ tạo nên Re $_2O_3$ Cl $_6$. Ngoài ra người ta còn biết những oxohalogenua khác của reni(VI) như ReOCl $_4$, ReOBr $_4$ và Re O_2 Br $_2$.

HỌP CHẤT CỦA TECNETI(VII) VÀ RENI(VII)

Tecneti heptaoxit và reni heptaoxit

Tecneti heptaoxit (Tc_2O_7) và reni heptaoxit (Re_2O_7) là chất ở dạng tinh thể màu vàng, Tc_2O_7 nóng chảy ở 119,5°C và sôi ở 310,6°C còn Re_2O_7 nóng chảy 304°C và sôi ở 355°C.

Tinh thể tecneti heptaoxit có mạng lưới phân tử. Phân tử Tc_2O_7 có tâm đối xứng, trong đó liên kết cầu Tc-O-Tc hợp thành đường thẳng. Hơi của reni heptaoxit bao gồm những phân tử Re_2O_7 có cấu tạo giống phân tử Tc_2O_7 nhưng tinh thể có kiến trúc lớp, mỗi lớp được tạo nên bởi số lượng như nhau của những tứ diện ReO_4 và bát diện ReO_6 nối với nhau qua nguyên tử O chung.

Tecneti và reni heptaoxit đều hút ẩm mạnh, dễ tan trong nước tạo thành axit petecnetic (HTcO₄) và axit perenic (HReO₄) nên chúng là anhiđrit axit.

Khi đun nóng, chúng bị những khí H_2 , CO và SO_2 khử đến oxit thấp hơn và đến kim loại.

Ví dụ:

$$Tc_2O_7 + 7H_2 = 2Tc + 7H_2O$$

 $Re_2O_7 + 7H_2 = 2Re + 7H_2O$

Các heptaoxit trên được điều chế bằng cách làm mất nước của các axit hoặc bằng tác dụng của khí $\rm O_2$ với Tc kim loại ở 500°C, với Re kim loại ở 150°C. Ở 150°C, Re $_2\rm O_7$ được tạo nên lại có thể tác dụng với khí $\rm O_2$ dư tạo nên peoxit Re $\rm O_4$ (hay Re $_2\rm O_8$) là chất bột màu vàng-đỏ có thể phân hủy trở lại thành Re $_2\rm O_7$ và $\rm O_2$ khi đun nóng.

Axit petecnetic và axit perenic

 $Axit\ petecnetic\ (HTcO_4)$ là chất dạng tinh thể màu đỏ, hút ẩm mạnh và tan trong nước cho dung dịch màu hồng.

Axit perenic (HReO₄) chỉ biết được trong dung dịch và không có màu. Chúng là axit mạnh. Muối của HTcO₄ là petecnetat (còn gọi là petecnat) và của HReO₄ là perenat. Cả axit và muối đều chiết được bằng một số dung môi hữu cơ. Người ta đã biết các muối petecnetat và nhất là perenat của nhiều cation kim loại. Đa số petecnetat và perenat đều dễ tan. Về độ tan, perenat của kim loại kiểm gắn với peclorat còn petecnetat tan nhiều hơn (ví dụ độ tan ở 20°C của KReO₄ là 9,8g/l của KTcO₄ là 126 g/l). Muối petecnetat và perenat đồng hình với peclorat và pemanganat và bền với nhiệt hơn. Các petecnetat và perenat kim loại kiểm có thể nóng chảy không phân hủy. Ví dụ như KReO₄ nóng chảy ở 518°C và sôi ở 1370°C trong khi KClO₄ phân hủy ở 400°C và KMnO₄ ở 200°C.

Ion ${\rm TcO_4^-}$ và ion ${\rm ReO_4^-}$ có cấu hình tứ diện đều ở trong tinh thể cũng như trong dung dịch. Trong dung dịch, ion ${\rm TcO_4^-}$ có màu hồng còn ion ${\rm ReO_4^-}$ không màu. Khác với ${\rm MnO_4^-}$, những ion ${\rm TcO_4^-}$ và ${\rm ReO_4^-}$ hoàn toàn bền trong dung dịch kiềm. Chúng là chất oxi hóa yếu hơn nhiều so với ion ${\rm MnO_4^-}$ nhưng có thể bị khử khi tác dụng với HCl, HBr và HI.

Tuy nhiên với H_2S , những ion TcO_4^- và ReO_4^- trong dung dịch $HCl\ 2 \div 4M$ lại tạo nên kết tủa màu nâu Tc_2S_7 và Re_2S_7 .

Ví dụ:

$$2KReO_4 + 7H_2S + 2HCl = Re_2S_7 + 2KCl + 8H_2O$$

Axit petecnetic và axit perenic được điều chế bằng tác dụng của Tc_2O_7 và Re_2O_7 với nước.

Halogenua và oxohalogenua của Tc(VII) và Re(VII)

Người ta chỉ biết được *reni heptaflorua* (ReF₇) nhưng biết được một số *oxohalogenua* như TcO₃F, TcO₃Cl, ReO₃F, ReO₃Cl, ReO₃Br, ReOF₅, ReO₂F₃.

 ${\rm Re}F_7$ màu vàng nhạt, nóng chảy ở 48,3°C tạo nên khi cho khí F_2 ở áp suất khoảng 0,25 atm đi qua Re kim loại đun nóng ở 300 - 400°C.

 ${
m TcO_3F}$ màu vàng, nóng chảy ở 18,3°C được tạo nên khi khí ${
m F_2}$ tác dụng với ${
m TcO_2}$ ở 150°C.

TcO₃Cl không màu, chiết được bằng clorofom từ dung dịch thu được khi thêm dung dịch HCl 12M vào dung dịch KReO₄ trong axit sunfuric 18M.

 ${
m ReO_3F}$ màu vàng, nóng chảy ở 147°C và sôi ở 164°C, được tạo nên khi dung dịch HF tác dung với ${
m ReO_3Cl}$.

 $\rm ReO_3Cl$ không màu, nóng chảy ở 4,5°C và sôi ở 131°C, được tạo nên khi khí Cl $_2$ tác dụng với $\rm ReO_3$ ở 190°C.

 $\rm ReO_3Br$ màu trắng, nóng chảy ở 39,5°C và sôi ở 163°C, được tạo nên khi khí $\rm O_2$ tác dụng với $\rm ReBr_4$ ở 120°C.

 ${\rm ReOF_5}$ màu kem sữa, nóng chảy ở 34,5°C và sôi ở 55°C, được tạo nên khi hỗn hợp khí ${\rm F_2}$ và ${\rm N_2}$ tác dụng với ${\rm ReO_2}$ ở 150°C.

 $\rm ReO_2F_3$ màu vàng, nóng chảy ở 95°C và sôi ở 200°C cùng được tạo nên khi điều chế $\rm ReOF_5.$

400

CHƯƠNG VII

CÁC NGUYÊN TỐ NHÓM VIIIB. HỌ SẮT

Nhóm VIIIB trước đây là nhóm VIII trong bảng tuần hoàn các nguyên tố dạng ngắn. Từ những năm 1963 ÷ 1968 nhóm nguyên tố này được gọi là nhóm VIIIB trong dạng dài của bảng tuần hoàn các nguyên tố, nghĩa là một phân nhóm phụ của nhóm VIII cùng với phân nhóm chính bao gồm các khí hiểm trước đây gọi là nhóm 0, nay là nhóm VIIIA. Thực ra giữa hai nhóm nguyên tố này không có những điểm chung nào về cấu tạo và tính chất trừ sự giống nhau về công thức thành phần của các oxit RuO₄ và OsO₄ với oxit XeO₄.

Nhóm VIIIB bao gồm 9 nguyên tố x**ếp** trong 3 cột: sắt (Fe), ruteni (Ru) và osmi (Os); cohan (Co), rođi (Rh) và iriđi (Ir); niken (Ni), palađi (Pd) và platin (Pt). Dưới đây là một số đặc điểm của các nguyên tố nhóm VIIIB (Bảng 17).

Bảng 17. Một số đặc điểm của các nguyên tố nhóm VIIIB

Nguyên tố, số thứ tự	Fe, 26	Co, 27	Ni, 28
Cấu hình electron hóa trị	3d ⁶ 4s ²	$3d^74s^2$	$3d^84s^2$
Bán kính nguyên tử , Å	1,26	1,25	1,24
Nguyên tố, số thứ tự	Ru, 44	Rh, 45	Pd, 46
Cấu hình electron hóa trị	4d ⁷ 5s ¹	4d ⁸ 5s ¹	4d ¹⁰ 5s ⁰
Bán kính nguyên tử , Å	1,35	1,34	1,37
Nguyên tố, số thứ tự	Os, 76	Ir, 77	Pt, 78
Cấu hình electron hóa trị	5d ⁶ 6s ²	5d ⁷ 6s ²	5d ⁹ 6s ¹
Bán kính nguyên tử, Å	1,35	1,35	1,35

Những nguyên tố nhóm VIIIB nằm chính giữa các chu kì lớn. Nguyên tử của tất cả

nguyên tố đều có một hay hai electron ở lớp ngoài cùng nên chúng là các kim loại. Trong các nguyên tố này, những obitan d được lần lượt điền thêm electron thứ hai. Điều này làm cho những nguyên tố đứng cạnh nhau trong một chu kì có tính chất giống nhau.

Số oxi hóa cực đại của nhóm nguyên tố này có thể là +8, thể hiện trong các oxit RuO₄ và OsO₄, còn các nguyên tố khác có số oxi hóa thấp hơn. So với các nhóm VB, VIB và VIIB, khuynh hướng tạo nên oxiaxit ứng với trạng thái oxi hóa cao của nguyên tố giảm xuống, trừ Fe, Ru và Os.

Sự biến đổi tính chất của các nguyên tố trong mỗi cột cũng tương tự sự biến đổi tính chất trong các nhóm kim loại chuyển tiếp khác. Ví dụ như khi đi từ nguyên tố trên xuống nguyên tố dưới ở trong mỗi cột, độ bền của hợp chất ứng với trạng thái oxi hóa cao tăng lên. Thật vậy trạng thái oxi hóa đặc trưng nhất của Fe là +2 và +3 còn của Ru và Os là +8, của Ni là + 2 còn của Pd và Pt là +4.

Các nguyên tố nhóm VIIIB có ít nhiều những tính chất của kim loại quý. Chúng có khả năng xúc tác nhiều phản ứng hóa học.

Những ion của kim loại nhóm VIIIB rất dễ tạo nên nhiều phức chất bền.

Dựa vào những điểm giống nhau của các nguyên tố nhóm VIIIB người ta chia chúng ra làm hai họ: họ sắt gồm ba nguyên tố Fe, Co và Ni và họ platin gồm sáu nguyên tố Ru, Rh, Pd, Os, Ir và Pt.

Trong chương này, chúng ta xét các nguyên tố họ sắt.

Một số đặc điểm của nguyên tố họ sắt được trình bày trên bảng 18.

Bảng 18 Đặc điểm của sắt, coban và niken

Nguyên	Số	Năng hượng ion hóa, eV		Thế điện cực chuẩn, V		
tố (E)	thứ tự	I ₁	I ₂	I ₃	M+2/M	M ³⁺ /M ²⁺
Fe	26	7,9	16,18	. 30,63	-0,44	+0,77
Со	27	7,86	17,05	33,49	-0,28	+1,81
Ni	28	7,5	16,4	35,16	-0,23	+2,1

Nguyên tử của Fe, Co và Ni có vỏ electron ngoài cùng giống nhau (4s²) và bán kính nguyên tử giảm dần theo chiều tāng của số electron điền vào các obitan 3d. Có cùng một lớp vỏ electron ngoài cùng như nhau, khi điện tích hạt nhân tăng lên, electron được hút mạnh hơn làm giảm bán kính của nguyên tử mặc dù số electron tăng lên.

9.9. 9.4.9.

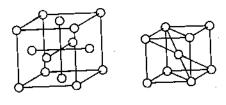
Những trạng thái oxi hóa đặc trưng của sắt, coban và niken là +2 và +3. Theo thứ tự Fe-Co-Ni, độ bền của các hợp chất E(III) giảm xuống như đã thấy qua các thế điện cực $E^{o}_{M^{3+}/M^{2+}}$ và năng lượng ion hóa I_3 của các nguyên tố (bảng 6). Điều này được giải thích bằng sự tăng độ bền của cấu hình electron theo thứ tự $3d^6$ (Fe^{2+}) $-3d^7$ (Co^{2+}) $+3d^8$ (Ni^{2+}), nghĩa là cấu hình electron càng bền khi càng tiến gần đến cấu hình electron bão hòa $3d^{10}$.

ĐƠN CHẤT

Tính chất vật lí

Sắt, coban và niken là những kim loại có ánh kim, sắt và coban có màu trắng xám, niken có màu trắng bạc. Trong thiên nhiên sắt có 4 đồng vị bền ⁵⁴Fe, ⁵⁶Fe (91,68%), ⁵⁷Fe và ⁵⁸Fe, coban có duy nhất một đồng vị bền ⁵⁹Co, niken có 5 đồng vị bền: ⁵⁸Ni (67,7%) ⁶⁰Ni, ⁶¹Ni, ⁶²Ni, ⁶⁴Ni. Đồng vị nhân tạo ⁶⁰Co phóng xạ γ với chu kì bán rã ~5 năm, được dùng trong y học để chiếu xạ những khối u ác tính và trong công nghiệp để phát hiện vết rạn và vết rỗ trong kim loại đúc.

Sắt và niken để rèn và dễ đát mỏng, coban cứng và dòn hơn. Dưới đây là một số hằng số vật lí của các kim loại sắt, coban và niken (Bảng 19).


Bảng 19 Hằng số vật lí quan trọng của kim loại

Kim loại (E)	Nhiệt độ nóng chảy, °C	Nhiệt độ sôi, °C	Nhiệt thăng hoa, kJ/mol	Ti khối	Độ cứng (thang Moxo)	Độ dẫn điện (Hg=1)
Fe	1536	2880	418	7,91	4 – 5	10
Со	1495	3100	425	8,90	5,5	10
Ni	1453	3185	424	8,90	5	14

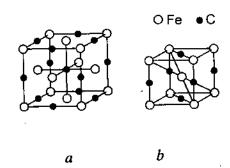
Sắt có 4 dạng thù hình bền ở những khoảng nhiệt độ xác định:

Fe
$$\alpha \xrightarrow{700^{\circ}C}$$
 Fe $\beta \xrightarrow{911^{\circ}C}$ Fe $\gamma \xrightarrow{1390^{\circ}C}$ Fe $\delta \xrightarrow{1536^{\circ}C}$ Fe long

Những dạng α và β có kiến trúc tinh thể kiểu lập phương tâm khối (Hình 38a) nhưng có kiến trúc electron khác nhau nên Fe α có tính sắt-từ và Fe β có tính thuận từ, Fe α khác với Fe β là không hoà tan C, Fe γ có kiến trúc tinh thể kiểu lập phương tâm diện (Hình 38b) và tính thuận từ, Fe δ có kiến trúc lập phương tâm khối như Fe α nhưng tồn tại đến nhiệt độ nóng chảy.

Hình 38. Kiến trúc tinh thể của Fe α và Fe β (a) Kiến trúc tinh thể của Fe γ (b)

Coban có hai dạng thù hình: Co α có kiến trúc lục phương bền ở < 417°C và Co β có kiến trúc lập phương tâm diện bền ở > 417°C.


Niken có 2 dạng thủ hình: Ni α lục phương bền ở < 250°C và Ni β lập phương tâm diện bền ở > 250°C.

Khác với hầu hết kim loại, Fe, Co và Ni có tính, sắt-từ: chúng bị nam châm hút và dưới tác dụng của đòng điện chúng trở thành nam châm. Từ - tính của sắt đã được phát hiện từ thời cổ xưa, cách đây hơn hai ngàn năm người Trung Hoa đã biết dùng từ-tính đó để chế la bàn và đến ngày nay loại la bàn đó vẫn còn được sử dụng. Nguyên nhân của tính sắt-từ không phải chỉ là ở nguyên tử hay ion mà chủ yếu là ở mạng lưới tinh thể của chất.

Sắt, coban và niken tạo nên rất nhiều hợp kim quan trọng. Tùy thuộc vào lượng C trong sắt người ta chia ra: sắt mềm (< 0,2%C), thép (0,2 - 1,7%C) và gang (1,7 - 5%C).

Đáng chú ý là C tan đáng kể trong Fe γ. Dung dịch rắn của C trong Fe γ được gọi là austenit, chứa đến 1,7%C (về khối lượng). Đây là một pha xâm nhập, trong mạng lưới tinh thể austenit những nguyên tử C chiếm trung điểm của các cạnh và tâm của lập phương (Hình 39a).

Khi cho kết tinh thép chứa đến 1,7%C, mới đầu không có khả năng hòa tan C nên C tách ra, do đó thu được hỗn hợp tinh thể của than chì và Fe α gọi là ferit. Nếu làm nguội tương đối nhanh, cacbon tách ra ở dạng Fe₃C. Nếu làm nguội lạnh rất nhanh (tôi thép), Fe γ chuyển thành Fe α nhưng C chưa kịp tách ra nên thu được một pha không bền về mặt nhiệt động, đó là dung dịch rắn quá bão hòa của C trong Fe α gọi là mactensit (Hình 39b).

Hình 39. Kiến trúc tinh thể của austenit (a) Kiến trúc tinh thể của mactensit (b)

400

Pha này rat cứng và giòn. Để làm cho thép có những đặc tính cần thiết, người ta *ram* thép, nghĩa là giữ các đồ bằng thép ở nhiệt độ cao trong một thời gian để mactensit phân hủy thành ferit và cacbon. Tùy thuộc vào nhiệt độ và thời gian ram sẽ thu được những tỉ lệ khác nhau của phần cứng (mactensit) và phần mềm (ferit) và những kích thước tinh thể khác nhau của chúng. Như vậy việc xử lí nhiệt có ảnh hưởng rất mạnh đến tính chất của thép.

Tính chất của thép còn chịu ảnh hưởng rất lớn của những chất cho thêm để tạo hợp kim. Crom truyền cho thép tính chịu nhiệt và chịu ăn mòn. Cho thêm một lượng tương đối bế Mn, Ni, Cr, W sẽ gây nên sự kết tinh mactensit khi làm nguội chậm thép và như vậy thép được tự tôi. Lượng thêm đáng kể của những kim loại đó (ví dụ 8-22% Ni chẳng hạn) làm bên austenit ở nhiệt độ thấp và khi làm nguội thép, Fe γ không chuyển thành Fe α ; trong thép vẫn còn dung dịch của C trong hệ austenit - Fe γ và thép có độ bền cơ học cao, có thể tồn tại ở nhiệt độ nóng đỏ. Việc thêm kim loại đất hiếm vào thép làm tăng độ bền của thép ở nhiệt độ thấp. Những thiết bị bằng thép bình thường khi làm việc ở vùng băng giá sẽ bị hỏng sau một tháng, nếu thép đã được cho thêm đất hiếm thì thời gian sử dụng tăng lên hàng chục lần.

Những hợp kim của coban có từ-tính, bền nhiệt và bền hóa học có vai trò quan trọng đối với khoa học và công nghệ. Hợp kim rất bền hóa học là vitalium chứa 65% Co, 25%Cr, 3% Ni và 4% Mo, được dùng làm vật liệu chế tạo những chi tiết của động cơ phản lực và tuôc bin khí vì nó chịu được tác dụng của các khí gây ăn mòn ở nhiệt độ 1000°C. Một số hợp kim của coban gần với platin về tính tro hóa học. Hợp kim siêu cứng stelit (xem tr. 88) được dùng không chỉ để làm dụng cụ cắt gọt mà còn để hàn kim loại vì ở nhiệt độ cao nó không bị oxi hoá. Anico chứa 50% Fe, 24% Co, 14% Ni, 9% Al và 3% Cu là một trong những hợp kim-từ quan trọng của coban được dùng để làm nam châm mạnh. Gần đây hợp kim samari - coban được dùng làm nền của nam châm vĩnh cửu có công suất vượt hàng chục lần công suất của nam châm với nền là sắt.

Những hợp kim quan trọng chứa niken được sử dụng rộng rãi là *microm* (xem tr.88), nikelin chứa 31% Ni, 56% Cu và 13% Zn ít biến đổi theo nhiệt độ, constantan chứa 40% Ni và 60% Cu bên với hóa chất, được dùng làm thiết bị hóa học, monen chứa 68% Ni, 2,5% Fe, 28% Cu; 1,5% Mn bên với axit, kiềm và bên cơ học được dùng làm vật liệu chế tạo trong ngành đóng tàu, công nghiệp hoá chất và y học, thép không rỉ (xem tr.88), thép chế tạo máy chứa 12 - 15% Ni và 1-2% Cr, thép inva chứa 30% Ni, 0,5% Mn, 0,5% C, còn lại là Fe, có hệ số nở nhiệt bằng số không, được dùng làm những chi tiết rất quan trọng, ví dụ như quả lắc đồng hồ. Hơn 80% lượng niken được sản xuất hàng năm dùng để chế hợp kim.

Tính chất hóa học

Sắt, coban và niken là những kim loại có hoạt tính hóa học trung bình và hoạt tính đó giảm xuống từ Fe đến Ni.

Ở điều kiện thường nếu không có hơi ẩm, chúng không tác dụng rõ rệt ngay với những nguyên tố không-kim loại điển hình như O₂, S, Cl₂, Br₂ vì có màng oxit bảo vệ. Nhưng khi đun

nóng, phản ứng xảy ra mãnh liệt, nhất là khi kim loại ở trạng thái chia nhỏ. Ở trạng thái chia rất nhỏ, Fe, Co và Ni là *chất tự cháy*, nghĩa là chúng có thể cháy trong không khí ở ngay nhiệt độ thường. Nguyên nhân của hiện tượng này là tổng bề mặt tiếp xúc rất lớn giữa các hạt kim loại với không khí và sự sai lệch mạng lưới tinh thể của hạt so với kiến trúc bền của kim loại.

Khi đun nóng trong không khí khô, sắt tạo nên ${\rm Fe_2O_3}$ và ở nhiệt độ cao hơn, tạo nên ${\rm Fe_3O_4}$:

$$3Fe + 2O_2 = Fe_3O_4$$

ở trên 300°C coban tạo nên CoO và niken bắt đầu tác dụng ở trên 500°C tạo nên NiO.

Khí Cl_2 phản ứng rất dễ dàng với Fe tạo thành FeCl_3 là chất dễ bay hơi nên không tạo được màng bảo vệ. Ngược lại florua của những kim loại này không bay hơi (vì liên kết có tính ion) nên Fe, Co và nhất là Ni bền với khí F_2 ở nhiệt độ cao. Ở nhiệt độ nóng đỏ, Ni không bị khí F_2 phá hủy, những thiết bị làm việc trong khí quyển F_2 được làm bằng niken.

Với N_2 , cả ba kim loại tác dụng ở nhiệt độ không cao lắm tạo nên Fe_2N , CoN và Ni_3N_2 ... Ở nhiệt độ cao hơn, những nitrua này phân hủy nhưng trong kim loại vẫn còn lại một lượng nitơ đáng kể ở dạng dung dịch rắn. Sự có mặt của nitơ trong thép làm giảm chất lượng của thép nên khi sản xuất thép, người ta luôn tìm cách loại trừ nitơ. Mặt khác, việc đưa nitơ lên bề mặt các đồ bằng thép (nitơ hoá bằng cách đun nóng trong khí quyển NH_3) làm cho bề mặt đó bền hơn đối với sự va đập và mài mòn. Với cùng mục đích đó, người ta đưa cacbon lên bề mặt thép (xementit hoá) bằng cách đun nóng trong khí quyển CO.

Fe, Co và Ni tác dụng với S khi đun nóng nhẹ tạo nên những hợp chất không hợp thức có thành phần gần với MS (ở đây M = Fe, Co, Ni). Sự có mặt của lưu huỳnh làm giảm chất lượng của thép nên phải loại trừ khi luyện thép.

Fe, Co và nhất là Ni tác dụng trực tiếp với khí CO tạo thành cacbonyl kim loại.

Fe, Co và nhất là Ni thuộc số ít kim loại bền với kiềm ở các trạng thái dung dịch và nóng chảy. Sở dĩ như vậy là vì oxit của chúng hầu như không thể hiện tính lưỡng tính. Trong phòng thí nghiệm người ta dùng chén nung bằng niken để nấu chảy kiềm (khi không được phép dùng chén nung bằng platin).

Trong dãy điện thế, Fe, Co và Ni đứng trước Sn nên đều tan trong dung dịch axit giải phóng khí H_2 và tạo nên muối E^{2+} , trong đó Fe tan dễ dàng hơn. Phản ứng không sinh ra muối E^{3+} vì kim loại và hiđro mới sinh đều khử được chúng về E^{2+} . Axit sunfuric đặc và axit nitric đặc không tác dụng với Fe mà còn thụ động hóa nó khi nguội. Trong thực tế người ta chuyên chở những axit đặc đó trong xitec bằng thép.

Đối với không khí và nước, các kim loại Fe, Co, Ni tinh khiết đều bền. Người ta dùng niken để mạ ngoài các đồ bằng kim loại. Cột sắt ở Đêli (Ấn Độ) được làm bằng sắt gần như tinh khiết đã không hề bị rỉ qua hơn 1500 năm nay. Ngược lại sắt có chứa tạp chất bị ăn mòn dần dưới tác dụng đồng thời của hơi ẩm, khí CO_2 và khí O_2 ở trong không khí tạo nên rỉ sắt:

$$2\text{Fe} + 3/2\text{O}_2 + \text{nH}_2\text{O} = \text{Fe}_2\text{O}_3.\text{nH}_2\text{O}$$

Rỉ sắt được tạo nên ở trên bề mặt là một lớp xốp và giòn không bảo vệ được sắt khỏi tiếp tục tác dụng và quá trình ăn mòn sắt tiếp tục diễn ra. Hàng năm, lượng sắt thép mất đi vì bị rỉ là vào khoảng 1/4 lượng sắt thép được sản xuất trên toàn thế giới.

Chống ăn mòn kim loại

không khí

Sắt bị rỉ khi tiếp xúc đồng thời với oxi và hơi ẩm của không khí. Rỉ sắt là quá trình ăn mòn có tính điện hóa, cơ chế của nó giống với cơ chế của quá trình oxi hóa - khử xảy ra ở trong pin điện. Một điểm này ở trên bề mặt của sắt thép có thể là điện cực âm, tại đó xảy ra quá trình oxi hóa sắt, electron từ sắt chuyển đến một điểm khác ở trên bề mặt của sắt là điện cực dương, tại đó xảy ra quá trình khử oxi của không khí:

Knong Km		
màng nước		
	$Fe(r) - 2e \rightarrow Fe^{2+}(dd)$	$O_2(k)+2H_2O(1)+4e \rightarrow 4OH^{-}(dd)$
sắt thép	diện cực âm	diện cực dương

rồi những ion ở trong màng nước tác dụng với nhau tạo thành kết tủa:

$$Fe^{2+} + 2OH^{-} = Fe(OH)_{2}$$

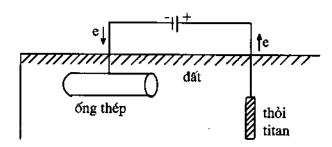
và kết tủa bị oxi không khí oxi hóa thành rỉ sắt:

$$4Fe(OH)_2 + O_2 + 2H_2O = 4Fe(OH)_3$$

đúng hơn kết tủa $Fe(OH)_3$ được biểu diễn bằng công thức $Fe_2O_3.xH_2O$.

Giống như ở trong pin, ở đây quá trình oxi hóa sắt xảy ra tại một số điểm trên bề mặt sắt và quá trình khử khí oxi xảy ra tại một số điểm khác và kim loại là dây dẫn electron từ điểm này sang điểm khác. Những điểm khác nhau đó có thể nhận biết được khi dùng chất chỉ thị $K_3[Fe(CN)_6]$ (đối với ion Fe^{2+}) và phenolphtalein (đối với ion OH). Khi trong màng nước có những chất tan như khí CO_2 hay NaCl, những chất điện lị đó tàm di chuyển các ion ở trong dung dịch để duy trì tính trung hòa điện nên đẩy nhanh quá trình ri sắt. Ví dụ sau đây cho thấy vai trò của NaCl đối với quá trình ri sắt: ô tô chạy ở những thành phố ven biển bị ri nhiều hơn ô tô chạy trong vùng đất liền.

Khi sắt chứa tạp chất hoặc có khuyết tật về mạng lưới tinh thể gây nên ví dụ bởi sự uốn cong thanh sắt chẳng hạn thì giữa sắt và tạp chất, giữa sắt mạng lưới bình thường và sắt mạng lưới khuyết tật sẽ xuất hiện những pin điện nên sắt bị ăn mòn nhanh hơn.


Có nhiều phương pháp khác nhau để chống ăn mòn kim loại:

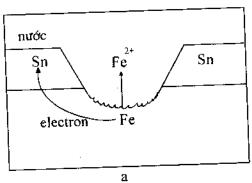
Phương pháp điện hóa được dùng rộng rãi để bảo vệ những kết cấu bằng thép. Khi hai kim loại tiếp xúc với dung dịch chất điện li, kim loại hoạt động sẽ bị ăn mòn, nó trở thành điện cực âm của pin điện còn kim loại kém hoạt động hơn trở thành điện cực dương, nghĩa là không bị ăn mòn. Theo nguyên lí đó, ngành khai thác dầu ở trên biển dùng thiết bị bảo vệ là những thỏi hợp kim của Mg và Al là kim loại hoạt động hơn Fe. Người ta lắp những thỏi hợp kim đó vào phần ngâm trong nước biển của cầu. Kết quả là giữa điện cực âm là hợp kim Mg-Al (thiết bị bảo vệ) và điện cực dương Fe (cầu thép) xuất hiện một hiệu thế và pin điện hoạt động: Mg và Al tan dần vào nước biển và khí H₂ bay lên ở điện cực dương Fe:

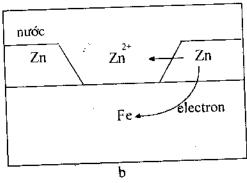
$$Mg - 2e = Mg^{2+}$$

 $2H_2O + 2e = H_2 + 2OH^{-}$
 $Mg + 2H_2O = Mg(OH)_2 + H_2$

Magie hidroxit và nhôm hidroxit được tạo nên ở trên bề mặt thiết bị bảo vệ bị nước biển rửa trôi nên thiết bị bảo vệ tiếp tục bị ăn mòn và kết cấu bằng thép được bảo vẹ.

Chính năm 1823, nhà hóa học người Anh Đêvi (Humphrey Davy, 1778-1829) lần đầu tiên đã đưa ra phương pháp dùng Sn hoặc Fe để bảo vệ những lá Cu bọc ngoài vỏ các tàu thuyền bằng gỗ chạy trên biển. Để bảo vệ những kết cấu thép như cầu tàu, cầu bến, ống dẫn và dây cáp chôn ngầm dưới đất, người ta nối chúng với cực âm của một nguồn điện một chiều và cực dương được nối với những thỏi kim loại khó bị rỉ ví dụ như titan mạ platin (Hình 40) cũng chôn ngầm ở dưới đất. Ở điện cực titan xảy ra quá trình oxi hóa nước giải phóng oxi, ở điện cực thép xảy ra quá trình khử nước giải phóng hiđro và kết cấu thép không bị ãn mòn.


Hình 40. Sơ đồ của phương pháp dùng nguồn điện bên ngoài


Phương pháp cách li. Người ta phủ lên bề mặt các đồ sắt thép một màng bọc để ngăn cách kim loại với môi trường ăn mòn. Màng bọc đó có thể là lớp dầu mỡ, sơn, vecni, chất polime hoặc là lớp mạ bằng những kim loại bền với không khí và nước như Ni, Cr, Sn, Zn, Cd... Ví dụ như vỏ xe ô tô được mạ niken, ghi đông xe đạp được mạ crom, tôn lợp nhà được mạ kẽm, sắt lá làm vỏ đồ hộp được mạ thiếc, đinh ốc vít được mạ catmi. Lớp mạ kim loại hầu hết được tạo nên bằng phương pháp điện phân dung dịch muối kim loại, một số ít bằng phương

100

pháp nhúng sắt thép vào kim loại nóng chảy như Zn hay Sn, một vài trường hợp khác bằng cách nhiệt phân ví dụ những hợp chất dễ phân hủy như $Ni(CO)_4$, $Cr(CO)_6$ hoặc $Cr(C_6H_6)_2$...

Lớp mạ bằng Sn, Ni hay Cd chỉ bảo vệ được sắt thép khi lớp đó bền, nếu lớp đó bị thủng thì tại đó sắt bị ăn mòn (Hình 41a) nhanh chóng vì Fe là kim loại hoạt động hơn (điện cực âm) trong khi lớp mạ bằng Zn khi bị thủng vẫn bảo vệ được sắt khỏi bị ăn mòn (Hình 41b) vì Fe là kim loại kém hoạt động hơn (điện cực dương).

Hình 41. Tác dụng khác nhau của lớp mạ thiếc (a) và lớp mạ kẽm (h)

Phương pháp dùng chất ức chế. Người ta cho thêm những chất ức chế vào môi trường ăn mòn để làm chậm quá trình ăn mòn kim loại. Trên thực tế, những chất ức chế được dùng rộng rãi để bảo vệ những hệ thống tiếp xúc với dung dịch ví dụ như các máy hóa, hệ thống làm lạnh, nồi hơi, thiết bị ngưng tụ, thùng chứa đựng axit v.v... Chất ức chế có thể là hợp chất hữu cơ như amin, hợp chất dị vòng chứa nito, mecaptan, urê, thiourê... và có thể là hợp chất vô cơ như muối nitrit, nitrat, cromat, heteropoli... Một số chất ức chế sẽ tác dụng với dung dịch hoặc kim loại hoặc sản phẩm ăn mòn tạo nên màng mỏng bao phủ bề mặt kim loại . Một số chất ức chế khác ví dụ như nitrit, nitrat, cromat sẽ oxi hóa kim loại tạo nên màng oxit bền ở trên bề mặt kim loại.

Trạng thái thiên nhiên và phương pháp điều chế

Sắt là một trong những nguyên tố phổ biến nhất, đứng hàng thứ tư sau O, Sị và Al, trong khi niken và nhất là coban ít phổ biến hơn nhiều. Trữ lượng của Fe, Co và Ni trong vỏ Quả Đất là 1,5%; 0,001% và 0,03% tổng số nguyên tử (tương ứng). Sắt là kim loại đã được biết đến từ thời cổ xưa, có lẽ nó có nguồn gốc vũ trụ. Trung bình trong 20 thiên thạch từ không gian vũ trụ rơi xuống Trái Đất, có một *thiên thạch sắt*. Thiên thạch sắt thường chứa đến 90% Fe; 8,5% Ni và 0,5% Co. Thiên thạch sắt lớn nhất đã biết được có khối lượng 60 tấn.

Những khoáng vật quan trọng của sắt là manhetit (Fe₃O₄) chứa đến 72% Fe, hematit (Fe₂O₃) chứa 60% Fe, pirit (FeS₂) và xiđerit (FeCO₃) chứa 35% Fe; của coban là cobantin (CoAsS) chứa 35,4% Co, smantit (CoAs₂) và của niken là nikelin (NiAs), milerit (NiS) và penladit ((Fe,Ni)₉S₈). Ngoài những mỏ lớn tập trung khoáng vật của sắt, sắt còn ở phân tán trong khoáng vật của những nguyên tố phổ biến nhất như Al, Ti, Mn... Khoáng vật của coban và niken thường ở lẫn với nhau và với các khoáng vật của đồng, sắt và kẽm. Sắt và coban có vai

161

trò sinh học rất lớn, hồng cầu của máu động vật chứa phức chất hem của sắt, vitamin B_{12} là phức chất của coban. Ngoài ra sắt và coban là nguyên tố vi lượng trong thực vật.

Nhiều nước trên thế giới có giàu quặng sắt như Thụy Điển, Nga, Pháp, Tây Ban Nha, Trung Quốc, Mỹ, Canađa, Cuba, Chilê. Brazin, Nam Phi, ... Những nước có nhiều quặng coban là Canađa, Cuba, Nga, Zambia và Zaia. Những nước có giàu quặng niken là Cuba, Canađa, Nga, Philipin, Inđonêxia và Australia.

Nước ta có mỏ manhetit lẫn hematit ở Trại Cau (Thái Nguyên), mỏ xiđerit ở Tiến Bộ (Thái Nguyên) và mỏ limonit ở Quý Sa (Lao Cai) hiện đang được khai thác. Mấy năm gần đây mới phát hiện mỏ manhetit lớn ở Thạch Khê (Hà Tĩnh).

Cách đây hơn 4000 năm loài người đã biết luyện sắt từ quặng. Sắt luyện được cứng và bền hơn bronzơ nên là vật liệu cạnh tranh với bronzơ. Cách đây khoảng 3000 năm thời đại đồ sắt đã thay thế thời đại đồ đồng thiếc và tiếp tục phát triển cho đến ngày nay. Hiện nay sắt và hợp kim của sắt chiếm 95% tổng lượng kim loại được sản xuất hàng năm trên thế giới.

Mấy thế kỉ nay, sắt được sản xuất với quy mô công nghiệp bằng lò cao. Nguyên liệu để luyện gang là quặng sắt, than cốc, chất chảy và không khí.

Từ thời cổ đại, người Ai Cập và người Trung Hoa đã chế được men màu xanh đẹp để làm những bức khảm. Men đó ngày nay được biết là tạo nên khi nấu chảy quặng coban với thạch anh và kali cacbonat. Tuy nhiên, mãi đến năm 1735, coban kim loại mới được nhà hóa học Thụy Điển Bran (G. Brandt) tách ra từ quặng. Quặng coban nhìn bề ngoài tưởng là quặng đồng nên trước đó người ta đã tốn nhiều công sức để tách đồng từ quặng đó nhưng không thành công. Bởi vậy, những thợ đào quặng người Đức gọi quặng đó là Kobold, tên của con quỷ là kẻ thù của người thợ mỏ trong câu chuyện thần thoại, và về sau nguyên tố có tên là coban (tên La Tinh là cobaltum).

Vì trữ lượng bé của coban, hàng năm tổng lượng coban sản xuất trên thế giới chỉ vào khoảng 20 ngàn tấn mặc dù coban là vật liệu chiến lược, nhất là đối với kĩ thuật quốc phòng.

Trong công nghiệp, người ta đốt cháy cobantin để chuyển các kim loại trong đó thành oxit kim loại còn As và S thoát ra ngoài dưới dạng As_2O_3 và SO_2 . Chế hoá các oxit kim loại với dung dịch HCl để chuyển chúng thành clorua. Sục khí Cl_2 vào dung dịch clorua để chuyển Fe(II) thành Fe(III) và trung hoà dung dịch bằng $CaCO_3$ để $Fe(OH)_3$ kết tủa. Năng cao pH của dung dịch clorua còn lại và thêm clorua vôi đủ để oxi hoá Co(II) mà không oxi hóa Ni(II):

$$2\text{Co(OH)}_2 + \text{H}_2\text{O} + \text{CaOCl}_2 = 2\text{Co(OH)}_3 + \text{CaCl}_2$$

Nung kết tủa Co(OH)3 để được oxit rồi dùng C hay CO khử oxit:

$$Co_3O_4 + 4C$$
 = 3Co + 4CO

$$C_{O_3O_4} + 4CO = 3C_0 + 4CO_2$$

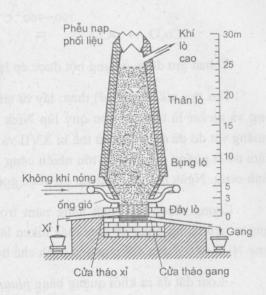
Coban thu được ở dạng bột được ép lại và nấu chảy trong lò điện.

Tên gọi niken (nickel) được lấy từ tên của khoáng vật kupfernickel, kupfer có nghĩa là đồng và nickel là tên của con quỷ lùn Nick ở trong truyền thuyết của những người thợ mỏ. Khoáng vật đó đã được biết từ thế kỉ XVII và được gọi như vậy là vì những người thợ mỏ tưởng nhằm nó là quặng đồng và đã tốn nhiều công sức để luyện đồng từ quặng đó và tất nhiên không thành công. Ngày nay khoáng vật đó được gọi là nikelin.

Lượng niken sản xuất hàng năm trong công nghiệp lớn gấp mười lần lượng coban. Nguyên liệu chính dùng để khai thác niken là quặng nghèo chứa sunfua đồng và niken với hàm lượng Ni là từ 0,3 đến 4% nên quá trình chế hóa khá phức tạp và bao gồm nhiều giai đoạn:

- Loại đất đá ra khỏi quặng bằng phương pháp tuyển nổi để được tinh quặng chứa ~10%
 Cu và Ni.
- Đốt tinh quặng trong lò đốt nhiều tầng giống lò đốt pyrit của dây chuyển sản xuất axit sunfuric để giảm bốt S trong quặng.
- Nấu chảy sản phẩm thu được của lò đốt trên ở trong lò phản xạ. Sau khi loại thêm S và tách xỉ ra, sản phẩm thu được chứa ~16% Cu và Ni, gần ứng với thành phần Cu₂S + Ni₂S₃.
- Nấu chảy sản phẩm của lò phản xạ với chất chảy ở trong lò thổi (kiểu lò Bexeme) và thổi không khí. Sau khi tách xỉ, sản phẩm thu được chứa ~ 80% Cu và Ni.
- Để nguội sản phẩm trên đây, nghiên nhỏ và oxi hóa hoàn toàn thành oxit: CuO, NiO và một ít oxit của các kim loại khác chưa đi hết vào xỉ.
- Khử hỗn hợp oxit kim loại ở 350°C bằng khí than nước (56% $\rm H_2$ và 25% CO) thành hỗn hợp kim loại.
- Cho khí CO đi qua hỗn hợp kim loại ở nhiệt độ 50 80°C, khí CO tác dụng với niken tạo thành niken tetracacbonyl (Ni(CO)₄) là chất lỏng dễ bay hơi.
 - Phân hủy Ni(CO)₄ ở 200°C, thu được niken có độ tinh khiết cao (99,99%).

Luyện gang


Gang là hợp kim của sắt chứa 1,7 đến 5% C. Vì chứa một lượng đáng kể C, gang cứng và giòn nên không rèn và cán kéo được. Có hai loại gang: gang xám và gang trắng. Gang xám chứa C ở dạng than chì, chỗ gãy của gang xám có màu xám. Gang xám dùng để đúc bệ máy, vô lăng và ống dẫn. Gang trắng chứa ít cacbon hơn và chủ yếu ở dạng Fe₃C. Gang trắng có màu sáng, cứng và giòn hơn gang xám, được dùng để luyện thép.

Gang được luyện ở trong lò cao (Hình 50). Lò cao có vỏ bằng thép, bên trong lót gạch chịu lửa. Lò thường có chiều cao 30m, công suất trên 3000 tấn gang trong một ngày. Lò cao

hoạt động liên tục, sau 5 ÷ 10 năm mới phải ngừng để tu sửa.

Qua phễu hình nón ở phía trên của thân lò, phối liệu được nạp vào lò theo lớp: quặng sắt, than cốc và chất chảy. Quặng sắt là các khoáng vật oxit của sắt, được đập vỡ thành cục. Chất chảy (còn gọi là chất trợ dung) có thể là đá vôi nếu trong quặng sắt có nhiều cát và alumosilicat hoặc là cát nếu trong quặng có nhiều đá vôi. Than cốc vừa là nhiên liệu, vừa là chất khử, vừa là chất tạo gang.

Khi thổi không khí nóng khoảng 600÷800°C vào lò cao qua ống gió nằm ở phía dưới của bụng lò, than cốc cháy tạo thành CO₂, phát nhiệt nhiều và nâng nhiệt độ ở đó lên đến 1800÷1900°C:

Hình 50. Sơ đồ của lò cao

$$C + O_2 = CO_2$$

Khí CO, bay lên tác dụng với than cốc tạo nên khí CO:

$$CO_2 + C = 2CO$$

Phía trên của thân lò có nhiệt độ vào khoảng 500°C, tại đây khí CO khử Fe_2O_3 đến Fe_3O_4 rồi FeO. Ở khoảng 1000°C , FeO bị CO khử đến sắt:

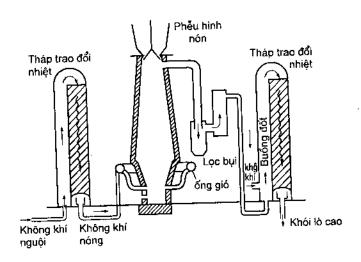
$$3Fe_2O_3 + CO = 2Fe_3O_4 + CO_2$$

 $Fe_3O_4 + CO = 3FeO + CO_2$
 $FeO + CO = Fe + CO_2$

Sắt di chuyển xuống phía dưới của bụng lò, tác dụng với C và CO ở nhiệt độ cao tạo nên xementit:

$$3Fe + C = Fe_3C$$

 $3Fe + 2CO = Fe_3C + CO_2$


Xementit và cacbon tan trong sắt tạo nên gang có nhiệt độ nóng chảy ~1200°C, thấp hơn nhiệt độ nóng chảy ~1550°C của sắt. Trong nhiên liệu có các tạp chất là oxit của silic, mangan, photpho nên các oxit đó bị khử cùng với oxit của sắt. Khi tan trong sắt, Si và Mn là tạp chất có ích, còn S và P là tạp chất có hại đối với gang.

Ở khoảng 1000°C, chất chảy tác dụng với các tạp chất của nguyên liệu tạo nên xỉ là chất tương đối dễ nóng chảy (~1300°C):

$$CaCO_3 = CaO + CO_2$$

 $CaO + SiO_2 = CaSiO_3$

Xi lò cao nhẹ hơn gang, tập trung ở đáy lò và nổi lên trên lớp gang lỏng. Tuần hoàn tháo xỉ ra theo cửa trên của đáy lò và tháo gang ra theo cửa dưới. Mỗi ngày, gang được tháo ra 4 lần (cách nhau 6 giờ) và dòng gang lỏng chảy ra có nhiệt độ ~1500°C.

Khí lò cao thoát ra ở phía trên của thân lò, chứa khoảng 30% CO; $2-3\%~\rm{H}_2$ và \rm{CH}_4 được chuyển sang hệ thống lọc bụi và tháp trao đổi nhiệt (Hình 51). Tại tháp trao đổi nhiệt, khí

Hình 51. Sơ đổ của lò cao và tháp trao đổi nhiệt

lò cao được đốt cháy ở trong buồng đốt rồi đi lên vòm tháp. Phản ứng cháy thoát ra nhiều nhiệt. Những sản phẩm khí của phản ứng cháy và những khí không bị đốt cháy đều mang một lượng nhiệt lớn, từ vòm tháp đi xuống xuyên qua khe hở giữa các đệm làm bằng gạch chịu lửa xếp chồng lên nhau ở trong tháp, đốt nóng các đệm đó và sau cùng được xả ra ngoài qua ống khói. Sau 2÷3 giờ, các đệm đã được đốt đủ nóng, ngừng không cho khí lò cao vào tháp mà cho luồng không khí nguội đi vào tháp theo chiều ngược lại: đi lên vòm tháp, xuyên qua khe hở giữa các đệm đã đốt nóng và đi vào lò cao. Bởi vậy, phục vụ cho một lò cao có hai tháp trao đổi nhiệt, khi đang đối cháy khí lò cao ở trong tháp này thì thổi không khí nguội vào tháp kia để được đốt nóng.

Luyện thép

Thép là hợp kim của sắt chứa từ 0,2 đến 1,7% C, dưới 0,8% S, P và Mn và dưới 0,5% Si. Thép tuy cứng nhưng đẻo hơn gang, dễ rèn và dễ cán kéo. Khi được làm nguội nhanh (tôi thép), thép trở nên rất cứng và khi được làm nguội chậm, thép trở nên mềm hơn. Có hai loại thép chính là thép cacbon và thép hợp kim.

Thép cachon được chia thành thép mềm, thép trung và thép cao. Thép mềm chứa 0.2% C, dùng để làm vỏ xe ôtô, thép sợi, ống, đinh bu loong. Thép trung chứa $0.3\div0.6\%$ C dùng làm dầm và xà nhà, lò xo. Thép cacbon cao chứa $0.6\div1.7\%$ C, dùng làm dao, kéo, búa, đục, khoan.

Thép hợp kim hay còn gọi là thép đặc biệt, ngoài những tạp chất có sẵn trong thép cacbon, còn chứa lượng lớn của một hay một số kim loại được đưa thêm vào như Al, Cr, Co, Mo, Ni, Mn, Ti, W, V, kim loại đất hiểm. Kim loại đưa thêm này truyền cho thép những tính chất đặc biệt. Ví dụ như thép crom-niken cứng, chịu nhiệt và không rỉ. Thép crom-molipđen và thép crom-vanađi đều cứng, bền ở nhiệt độ cao và áp suất cao, dùng làm các chi tiết của máy bay và máy nén. Thép vonfram cứng, dai và chịu nhiệt, dùng làm dụng cụ cắt gọt. Thép silic dùng làm thiết bị điện như mộtơ, máy phát, biến thế.

Luyên thép là quá trình loại bỏ lượng dư các tạp chất C, S, P, Si, Mn có trong gang. Muốn vậy người ta oxi hóa các tạp chất đó thành oxit, những oxit ở trạng thái khí như CO và CO₂bay ra ngoài, còn những oxit ở trạng thái rắn biến thành xỉ và nổi lên trên lớp thép lỏng. Những phương pháp luyện thép chính là phương pháp Bexeme, phương pháp Tomat, phương pháp Mactanh và phương pháp bazơ-oxi.

Phương pháp Bexeme (năm 855). Người ta luyện thép ở trong lò thổi có hình quả lê (Hình 52), vỏ ngoài bằng thép, bên trong lót gạch chịu lửa đinat. Đáy lò có một số cửa để thổi

không khí nén (áp suất 4-5 atm). Gang lỏng ở lò cao được chuyển thẳng vào lò thổi . Không khí thổi vào gang lỏng đốt cháy những tạp chất có trong gang:

$$Si + O_2 = SiO_2$$

 $2Mn + O_2 = 2MnO_2$
 $C + O_2 = CO_2$

và oxi hóa một phần sắt:

$$2\text{Fe} + \text{O}_2 = 2\text{FeO}$$

Những phản ứng này phát nhiệt nhiều làm cho nhiệt độ ở trong lò thổi lên đến 1600°C và toàn bộ chất ở trong lò đều ở trạng thái lỏng. Silic đioxit được tạo nên từ Si có trong gang và silic đioxit có trong lớp lót lò tác dụng với MnO và FeO tạo thành xỉ:

Hình 52. Sơ đồ của lò thổi Bexeme

$$FeO + SiO_2 = FeSiO_3$$

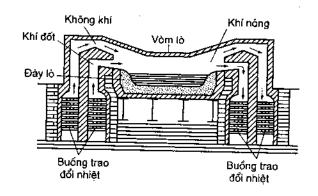
 $MnO + SiO_2 = MnSiO_3$

Xỉ lỏng nổi trên lớp thép lỏng được trút ra trước thép khi quay nghiêng lò thổi.

Quá trình luyện gang thành thép xảy ra nhanh ở trong lò thổi, chỉ trong 15÷20 phút, nên không cho phép điều chỉnh thành phần của thép. Nhược điểm của phương pháp Bexeme là

không kuyện được thép từ loại gang chứa nhiều P.

\$100


Phương pháp Tomat (năm 1878). Phương pháp Tomat khắc phục nhược điểm của phương pháp Bexeme và cho phép luyện thép từ gang chứa đến 2% P. Phương pháp này cũng dùng không khí nén thổi vào gang lỏng ở trong lò thổi giống như phương pháp Bexeme nhưng lớp lót của lò thổi được làm bằng gạch chịu lửa chứa MgO hay hỗn hợp MgO và CaO. Lớp lót lò này cho phép loại bỏ P:

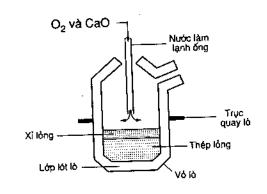
$$4P + 5O_2 = P_4O_{10}$$

 $P_4O_{10} + 6CaO = 2Ca_3(PO_4)_2$

Phương pháp Tomat cũng như phương pháp Bexeme không loại bỏ được hoàn toàn S là tạp chất có hai ở trong gang. Bởi vậy, cả hai phương pháp chỉ dùng để luyện thép từ gang không có quá 0,05% S.

Phương pháp Mactanh (năm 1860). Khác với hai phương pháp trên, trong phương pháp Mactanh, chất oxi hóa không chỉ là oxi của không khí được thổi vào lò mà cả sắt(III) oxit của quặng sắt và của sắt vụn cho thêm vào cùng với gang. Quá trình luyện thép được thực hiện trong lò lửa ngọn, gọi là lò Mactanh (Hình 53).

Lò được xây bằng gạch chịu lửa, vòm lò và thành lò được lót gạch địnat, còn đáy lò lát gạch chiu lửa chứa nhiều SiO₂ hay MgO và CaO tuỳ theo thành phần của phối liệu nạp vào lò. Nhiệt độ của lò đạt đến 1800°C. Mỗi khí này trước khi đưa vào lò đều được đốt nóng trước ở 1100÷1200°C trong các buồng trao đổi nhiệt nằm ở phía đười của lò. Ngọn lửa của lò luôn luôn tiếp xúc với bề mặt của phối liệu nóng chảy. Khí nóng từ lò đi ra được đưa vào buồng trao đổi nhiệt để đốt nóng các đệm bằng gạch chịu lửa rồi những đệm nóng này lại đốt nóng không khí và khí đốt trước khi đưa vào lò.


Hình 53. Sơ đồ của lò Mactanh

Những phản ứng hóa học xảy ra trong lò lửa ngọn không khác với lò thổi nhưng quá trình luyện thép kéo dài khoảng từ 6÷8 giờ. Nhờ thời gian kéo dài như vậy, người ta có thể phân tích được sản phẩm và cho thêm những vật liệu cần thiết để chế các loại thép có thành phần mong muốn, nhất là thép hợp kim.

Tuy nhiên, để luyện thép hợp kim, người ta thường hay dùng lò điện hồ quang có nhiệt độ trên 3000°C. Lò điện nhỏ và gọn hơn, mỗi mẻ sản xuất là 50 tấn thép.

Phương pháp bazo-oxi (năm 1953). Phương pháp này hiện đại hơn hiện nay được sử

dụng rất phổ biến ở nhiều nước trên thế giới. Phương pháp bazơ-oxi cải tiến phương pháp Bexeme: dùng lò thổi có công suất lớn hơn và thổi khí oxi tinh khiết có áp suất 10atm. Phối liệu nạp vào lò thổi là gang lỏng và sắt vụn. Qua một ống dẫn được làm lạnh ở ngoài bằng nước và đưa xuyên qua miệng lò thổi tới gần phối liệu (Hình 54) người ta thổi đồng thời bột CaO và khí ${\rm O_2}$ vào lò. Đòng CaO và ${\rm O_2}$ đó với tốc độ lớn có thể đi đến đáy lò và khuấy trộn mạnh lớp phối liệu lỏng ở trong lò. Tạp chất trong phối liệu được oxi hóa thành oxit, rồi oxit tác dụng với CaO tạo thành xỉ. Nhờ nhiệt của phản ứng oxi hóa tạp chất, các chất ở trong lò vẫn được giữ ở trạng thái lỏng. Sau ~40 phút, kéo ống dẫn khí ra khỏi lò và nghiêng lò để đổ xỉ ra trước, thép ra sau.

Hình 54. Sơ đồ lò thổi của phương pháp hazơ-oxi

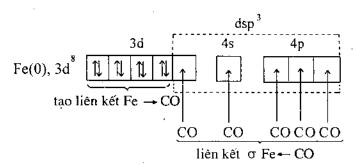
Phương pháp bazơ-oxi được sử dụng chủ yếu để sản xuất thép cacbon, trong $40 \div 45$ phút lò thổi sản xuất được $300 \div 350$ tấn thép.

Hai chục năm gần đây do than cốc ngày càng thiếu trong khi nhu cầu về sắt thép ngày càng tăng, các nhà luyện kim đã tìm các cách khác nhau để điều chế sắt trực tiếp từ quặng không qua lò cao. Trên thế giới đã xuất hiện ngày càng nhiều nhà máy sản xuất "sắt xốp" trực tiếp từ quặng sắt. Người ta đem quặng sắt đã nghiền và tuyển thiêu kết với một lượng nhỏ than cốc ở trong lò quay lớn. Sau đó dùng những chất khử như khí thiên nhiên (chủ yếu là metan) hay khí than nước khử quặng thiêu kết đó thành sắt xốp.

Ví dụ:

$$Fe_3O_4 + CH_4 = 3Fe + CO_2 + 2H_2O$$

Sắt xốp có hàm lượng sắt trên 90%. Thép được luyện từ sắt xốp và sắt vụn ở trong lò điện.


Khu gang thép đầu tiên ở nước ta được xây dựng ở Thái Nguyên vào năm 1959. Phân xưởng gang gồm có 3 lò cao, công suất bé. Phân xưởng thép có một lò Mactanh, gần đây đã được thay bằng các lò điện. Ngoài hai phân xưởng trên, khu liên hợp gang thép Thái Nguyên còn có phân xưởng cán kéo thép ở Gia Sàng, phân xưởng luyện than cốc, phân xưởng gạch chịu lửa và các phân xưởng cơ khí. Cuối năm 2000, khu gang thép Thái Nguyên được đầu tư nâng cấp để đáp ứng được phần nào nhu cầu về sắt thép của nước ta.

HỢP CHẤT CỦA Fe(0), Co(0) VÀ Ni(0)

Sắt pentacacbonyl

Sắt pentacachonyl (Fe(CO)₅) là chất lỏng màu vàng, hóa rắn ở -20°C, sôi ở 103°C và rất độc. Phân tử Fe(CO)₅ có cấu hình chóp kép tam giác với nguyên tử Fe ở trung tâm và các phân tử CO ở năm đỉnh:

Phân tử có tính nghịch từ, nguyên tử Fe trong phân tử có cấu hình electron $3d^8$ và ở trạng thái lai hóa dsp³. Những obitan lai hóa trống này nhận những cặp electron từ phân tử CO tạo nên liên kết σ -cho-nhận Fe \leftarrow CO và liên kết được làm bện thêm nhờ liên kết π -cho tạo nên bởi những cặp electron d của Fe và obitan phân tử π phản liên kết còn trống của CO:

Sắt pentacacbonyl không tan trong nước nhưng tan trong rượu, ete, axeton, benzen. Trong dung dịch ete, nó bị phân hủy ở nhiệt độ thường bởi tia tử ngoại:

$$2Fe(CO)_{5} \iff Fe_{7}(CO)_{9} + CO$$

Dựa vào phản ứng này người ta điều chế nonacacbonyl Fe₂(CO)₉.

Khi đun nóng ở 200-250°C trong điều kiện không có không khí, nó phân hủy thành Fe và CO, phản ứng này đùng để điều chế sắt tinh khiết làm chất xúc tác; trong điều kiện có không khí nó sẽ cháy tạo nên bột Fe₂O₃ mịn và tinh khiết. Pentacacbonyl tạo hỗn hợp nổ với không khí nhưng được dùng để cho thêm vào nhiên liệu động cơ làm chất chống nổ.

Trong dung dịch ete, nó tác dụng mãnh liệt với axit sunfuric đặc theo phản ứng :

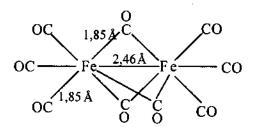
$$Fe(CO)_5 + H_2SO_4 = FeSO_4 + 5CO + H_2$$

và tác dụng với halogen (X) tạo nên $\text{Fe}(\text{CO})_5 X_2$ là hợp chất kém bền để biến thành $\text{Fe}(\text{CO})_4 X_2$ bền hơn.

Sắt pentacacbonyl tác dụng với dung dịch kiểm mạnh và đặc tạo nên H_2 Fe(CO)₄ (chất lỏng màu vàng chỉ bền ở dưới -10°C và tư bốc cháy trong không khí).

Ví du:

$$Fe(CO)_5 + Ba(OH)_2 = H_2Fe(CO)_4 + BaCO_3$$


Khi đun nóng ở 45° C với khí NO dưới áp suất, NO có thể thay thế hoàn toàn CO trong cacbonyl tạo thành sắt tetranitrozyl Fe(NO)₄ (tinh thể màu đen rất có khả năng phản ứng, ví dụ tác dụng với dung dịch H_2SO_4 tạo ngay [Fe(NO)]SO₄).

Sắt pentacacbonyl được điều chế bằng tác dụng của bột sắt với khí CO ở 150-200°C và 200 atm:

$$Fe + 5CO = Fe(CO)_s$$

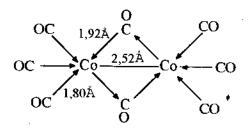
Sắt nonacacbonyl

Sắt nonacachonyl (Fe₂(CO)₉) là chất dạng tinh thể tam tà, màu vàng chói, nóng chảy ở 100°C. Phân tử của cachonyl hai nhân này có tính nghiệh từ và có cấu tạo:

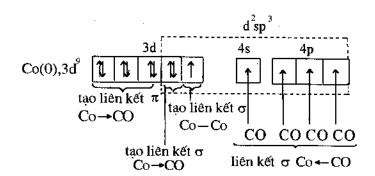
trong đó hai nguyên tử Fe liên kết trực tiếp với nhau và liên kết qua ba cầu CO. Mỗi một liên kết của cầu CO với nguyên tử Fe được tạo nên bởi sự ghép đôi một electron của CO với một electron của Fe. Còn liên kết giữa các phân tử CO khác với nguyên tử Fe đều có tính chất kép, nghĩa là bao gồm liên kết σ -cho-nhận từ CO và liên kết π -cho từ Fe có phổ biến trong cacbonyl kim loại. Như vậy trong cacbonyl hai nhân này, quy tắc khí hiếm cũng được tuân theo: mỗi nguyên tử Fe có cấu hình electron của nguyên tử Kr [26+1+(2×3)+3 (của cầu CO) = 36].

Sắt nonacacbonyl không tan trong nước, ete nhưng tan trong rượu, axeton, toluen. Trong bóng tối và ở điều kiện thường, nó kết hợp với CO tạo nên Fe(CO)₅. Ở 90-100°C nó phân huỷ theo phản ứng:

$$3Fe_2(CO)_9 = 3Fe(CO)_5 + Fe_3(CO)_{12}$$


Sát dodecacacbonyl

Sắt đođecacacbonyl [(Fe₃(CO)₁₂] là chất dạng tinh thể đơn tà, màu lục thẩm, tan trong rượu, ete, axeton, toluen. Ở 140° C, nó phân huỷ thành kim loại và khí CO. Nó được tạo nên khi đun nóng ở 70° C dung dịch toluen của Fe₂(CO)₉ ở trong khí quyển CO₂.



Coban octacacbonyl

Coban octacachonyl [(Co₂(CO)₈] là chất dạng tinh thể trong suốt, màu đỏ-da cam. Phân tử của cachonyl hai nhân này có tính nghịch từ và có cấu tạo:

trong đó mỗi nguyên tử Co tạo nên 6 liên kết: 4 liên kết σ -cho-nhận tạo nên từ cặp electron trên MO σ liên kết của CO, một liên kết σ -cho-nhận tạo nên từ cặp electron d của Co với MO $_{\pi}$ trống của CO và một liên kết σ tạo nên giữa hai nguyên tử Co. Như vậy hai liên kết σ của mỗi cầu CO ở đây được coi là hai liên kết cho-nhận ngược nhau: một từ CO và một từ kim loại. Liên kết giữa Co với các phân tử CO không phải cầu còn được làm bền thêm nhờ liên kết π -cho như trong các cacbonyl kim loại khác:

Giống với Mn, do có số lẻ electron Co tạo nên hợp chất cacbonyl ở dạng đime $[Co(CO)_4]_2$, nghĩa là quy tắc khí hiếm cũng được tuân theo.

So sánh những cacbonyl hai nhân đã xét: Mn₂(CO)₁₀, Fe₂(CO)₉ và Co₂(CO)₈ nhận thấy ngoài liên kết kim loại-kim loại, trong đecacacbonyl không có cầu CO, còn trong nonacacbonyl có ba cầu CO và trong octacacbonyl có hai cầu CO. Sự có mặt các cầu CO làm bền thêm cho liên kết kim loại-kim loại như đã thấy qua sự rút ngắn độ dài của các liên kết Mn-Mn, Co-Co và Fe-Fe là 2,92 Å, 2,52Å và 2,46 Å tương ứng.

Coban octacacbonyl nóng chảy ở 51°C. Trên nhiệt độ đó, nó phân huỷ theo phản ứng:

$$2Co_2(CO)_8 = Co_4(CO)_{12} + 4CO$$

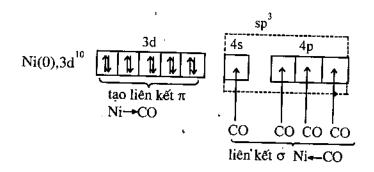
và trên 60° C phân huỷ thành kim loại và cacbon monooxit vì ở nhiệt độ đó những tinh thể màu đen $\text{Co}_4(\text{CO})_{12}$ bị phân hủy.

Coban octacacbonyl tan trong rượu và ete nhưng bị nước phân hủy:

$$3\text{Co}_2(\text{CO})_8 + 4\text{H}_2\text{O} = 4\text{HCo}(\text{CO})_4 + 2\text{Co}(\text{OH})_2 + 8\text{CO}$$

Nó tác dụng với dung dịch kiểm theo phản ứng:

$$6\text{Co}_2(\text{CO})_8 + 8\text{NaOH} = 8\text{HCo}(\text{CO})_4 + 4\text{Na}_2\text{CO}_3 + \text{Co}_4(\text{CO})_{12}$$


(Axit tetracacbonylcobantic $HCo(CO_4)_4$ là chất lỏng màu vàng, hóa rấn $-26,2^{\circ}C$ và sối ở $10^{\circ}C$).

Coban octaca
cbonyl được điều chế bằng tác dụng của bột coban với khí CO ở 220°C và
 $250~\mathrm{atm}$

Niken tetracacbonyl

Niken tetracacbonyl (Ni(CO)₄) là chất lỏng không màu, rất dễ bay hơi và hết sức độc. Đây là hợp chất cacbonyl kim loại đơn giản nhất. Phân tử có cấu hình tứ diện đều với nguyên tử Ni ở trung tâm và phân tử CO ở bốn đỉnh:

Phân tử có tính nghịch từ, nguyên tử Ni ở trong phân tử có cấu hình $3d^{10}$ và ở trạng thái lai hóa sp³. Những obitan lai hóa trống nhận những cặp electron từ MO σ liên kết của CO tạo thành liên kết σ -cho-nhận và liên kết được làm bên thêm nhờ liên kết π -cho được tạo nên từ những cặp electron d của Ni và những MO π * trống của CO:

Niken tetracacbonyl hóa rắn ở -23°C và sôi ở 43°C. Dưới tác dụng của tia tử ngoại hoặc khi đun nóng ở 180-200°C, nó phân hủy hoàn toàn thành kim loại và cacbon monooxit (có thể gây nổ). Nó không tan trong nước nhưng tan trong ete, clorofom, benzen.

Trong không khí niken tetracacbonyl bị oxi hóa dẫn thành NiO và O_2 . Hỗn hợp của không khí và hơi của nó có thể gây nổ. Nó dễ tác dụng với halogen tạo thành niken đihalogenua. Nó không tác dụng với dung dịch axit loãng và dung dịch kiềm nhưng tác dụng mạnh với axit sunfuric đặc (có thể gây nổ) và với axit nitric tạo thành muối niken(II).

Ví du:

$$Ni(CO)_4 + H_2SO_4 = NiSO_4 + 4CO + H_2$$

Khi đun nóng với khí NO dưới áp suất nó tạo nên niken đinitrozyl Ni(NO)₂ là chất bột màu xanh không tan trong nước nhưng tan trong clorofocm, ở 90°C phân hủy và phát sáng manh.

Niken tetracacbonyl được dùng để điều chế niken tinh khiết, mạ niken lên kim loại và thuỷ tinh, tách niken khỏi coban và làm chất xúc tác trong tổng hợp hữu cơ.

Nó được điều chế bằng tác dụng của bột niken với khí CO ở 60-80°C và áp suất thường. Đây là cacbonyl kim loại đầu tiên đã được điều chế vào năm 1890.

Trong phòng thí nghiệm người ta có thể điều chế bằng cách dùng khí H_2 khô khử NiC_2O_4 ở $400^{\circ}C$, làm nguội sản phẩm phản ứng trong khí quyển H_2 , rồi cho tác dụng với khí CO ở nhiệt độ thường. Hơi $Ni(CO)_4$ được ngưng tụ trong bình làm lạnh bằng nitơ lỏng.

HƠP CHẤT CỦA Fe(II), Co(II) VÀ Ni(II)

Nói chung hợp chất của Fe(II) để biến thành hợp chất của Fe(III), khả năng biến đổi hóa trị như vây giảm xuống từ Fe đến Ni.

Sắt(II), coban(II) và niken(II) oxit

Tất cả các oxit EO là chất rắn dạng tinh thể lập phương kiểu NaCl và có thành phần không hợp thức. FeO có màu đen, nóng chảy ở 1360°C, CoO màu lục, nóng chảy ở 1810°C và NiO màu lục, nóng chảy ở 1990°C.

Bột mịn FeO mới điều chế có khả năng tự cháy. Sau khi được nung nóng không lâu ở nhiệt độ cao, khả năng phản ứng của nó trở nên kém hơn. Khi đun nóng trong không khí ở 200-250°C, FeO biến thành Fe₂O₃ và ở 570°C phân hủy thành Fe và Fe₃O₄. Khi đun nóng trong khí quyển O₂ ở 400-500°C, CoO biến thành Co₃O₄. Sắt(II) oxit phân hủy nước khi đun nóng theo phản ứng:

$$2\text{FeO} + \text{H}_2\text{O} = \text{Fe}_2\text{O}_3 + \text{H}_2$$

Tất cả các oxit MO khi đun nóng dễ bị khử thành kim loại bởi H2, CO, C, Si, Al, Mg...

Các oxit MO không tan trong nước, tan dễ dàng trong dung dịch axit. Chỉ có CoO thể hiện tố hơn tính lưỡng tính, nó tan trong dung dịch kiềm mạnh, đặc và nóng tạo nên dung dịch màu xanh lam chứa ion $[\text{Co}(\text{OH})_4]^{2^-}$.

Các oxit MO có thể nấu chảy với nhiều oxit của kim loại và không-kim loại tạo nên những hợp chất có màu.

Coban(II) oxit và niken(II) oxit thường được dùng làm chất xúc tác, bột màu trong sản xuất thuỷ tinh và gốm.

Các oxit MO được điều chế trực tiếp từ các đơn chất hoặc bằng nhiệt phân các muối cacbonat, nitrat và oxalat hay nhiệt phân hidroxit.

Ví dụ:

$$\begin{array}{rcl}
940^{\circ}C \\
2Co + O_{2} & = & 2CoO \\
500^{\circ}C \\
FeCO_{3} & = & FeO + CO_{2} \\
CoC_{2}O_{4} & = & CoO + CO + CO_{2} \\
Ni(OH)_{2} & = & NiO + H_{2}O
\end{array}$$

Riêng FeO cần được điều chế trong khí quyển không có oxi.

Sắt(II), coban(II) và niken(II) hiđroxit

Các hiđroxit $E(OH)_2$ là kết tủa không nhầy, không tan trong nước, có kiến trúc lớp. $Fe(OH)_2$ có màu trắng nhưng ở trong không khí chuyển nhanh thành hiđroxit hỗn hợp $Fe(OH)_2$. $Fe(OH)_3$ màu lục rồi biến thành $Fe(OH)_3$ màu nâu-đỏ:

$$4Fe(OH)_2 + O_2 + 2H_2O = 4Fe(OH)_3$$

 $Co(OH)_2$ màu hồng, ở trong không khí chuyển chậm thành $Co(OH)_3$ màu nâu còn $Ni(OH)_2$ màu lục, bền với không khí và chỉ biến đổi khi tác dụng với những chất oxi hóa mạnh.

Ví dụ:

$$2Ni(OH)_2 + Br_2 + 2KOH = 2Ni(OH)_3 + 2KBr$$

Khi đun nóng trong điều kiện không có không khí, nhất là đối với $Fe(OH)_2$, các hidroxit mất nước biến thành oxit. Các hidroxit $M(OH)_2$ tan để dàng trong dung dịch axit, tính bazơ giảm xuống từ Fe đến Ni. Tính lưỡng tính chỉ thể hiện rất yếu ở $Fe(OH)_2$ và $Co(OH)_2$: chúng tan trong dung dịch kiểm mạnh, đặc và nóng. Người ta tách được những tinh thể màu lục nhạt của $Na_4[Fe(OH)_6]$, màu tím-đỏ của $Na_2[Co(OH)_4]$ và của $Ba_2[Co(OH)_6]$. Kết tủa $Ni(OH)_2$ không tan trong dung dịch kiểm có lễ vì có tích số tan bé ($\sim 10^{-18}$) chứ không phải vì khả năng tạo phức kém của Ni^{2+} với ion OH^- .

Kết tủa $E(OH)_2$ tan trong dung dịch đặc của muối amoni tương tự như $Mg(OH)_2$. Kết tủa $Fe(OH)_2$ không tan trong dung dịch NH_3 nhưng $Co(OH)_2$ và $Ni(OH)_2$ tan trong dung dịch NH_3 tạo thành phức chất:

$$Co(OH)_2 + 6NH_3 = [Co(NH_3)_6](OH)_2$$

 $Ni(OH)_2 + 6NH_3 = [Ni(NH_3)_6](OH)_2$

Bởi vậy các muối của Co²⁺ và Ni²⁺ dễ tác dụng với dung dịch NH₃ tạo nên những phức chất amoniacat.

Các hiđroxit $E(OH)_2$ được điều chế bằng tác dụng của dung dịch kiểm mạnh với muối kim loại (II):

$$E^{2+} + 2OH^{-} = E(OH)_{2}$$

Khi tác dụng với dung dịch kiểm, các muối Co²⁺ và Ni²⁺ mới đầu thường tạo nên kết tủa của muối bazơ rồi sau đó mới tạo nên kết tủa của hiđroxit.

Ví du:

$$\begin{array}{ccc} \text{CoCl}_2(\text{dd}) & \xrightarrow{\text{OH}^-} \text{CoOHCl (r)} & \xrightarrow{\text{OH}^-} & \text{Co(OH)}_2(\text{r}) \\ \text{(hồng-đỏ)} & \text{(xanh lam)} & \text{(hồng)} \end{array}$$

Kết tủa Fe(OH)₂ tinh khiết chỉ được tạo nên ở trong khí quyển và dung dịch hoàn toàn không có oxi.

Muối Fe(II), coban(II) và niken(II)

Muối E(II) có với hầu hết những anion bền. Muối khan có màu khác với muối ở dạng tinh thể hiđrat, ví dụ như FeCl₂ trắng, CoBr₂ màu lục và NiSO₄ màu vàng nhưng FeCl₂.6H₂O màu lục nhạt, CoBr₂.6H₂O màu đỏ và NiSO₄.7H₂O màu lục. Màu của muối khan không luôn luôn trùng với màu riêng của ion: Fe²+ màu trắng, Co²+ màu đỏ và Ni²+ màu vàng. Riêng muối Fe²+ là kém bền đối với oxi của không khí. Muối của axit mạnh như clorua, nitrat và sunfat tan để trong nước còn muối của axit yếu như sunfua, cacbonat, xianua, oxalat và photphat khó tan. Khi tan ở trong nước, các muối đều cho ion bát diện [E(H₂O)₆]²+ có màu đặc trưng: [Fe(H₂O)₆]²+ màu lục nhạt, [Co(H₂O)₆]²+ màu đỏ-hồng và [Ni(H₂O)₆]²+ màu lục. Ion bát diện [E(H₂O)₆]²+ cũng tồn tại trong một số tinh thể hiđrat, ví dụ như Fe(ClO₄)₂.6H₂O màu lục, FeSO₄.7H₂O màu lục, (NH₄)₂Fe(SO₄)₂.6H₂O màu lục, CoCl₂.6H₂O màu dỏ-hồng, Co(NO₃)₂.6H₂O màu đỏ-hồng, NiSO₄.7H₂O màu lục và NiSO₄.6H₂O màu lục. Màu lục của [Fe(H₂O)₆]²+ rất yếu nên dung dịch của muối Fe²+ thực tế không có màu. Trong nhiều tinh thể hiđrat khác, không có ion [E(H₂O)₆]²+ ví dụ như trong FeCl₂.6H₂O và NiCl₂.6H₂O không có ion [Fe(H₂O)₆]²+ và ion [Ni(H₂O)₆]²+ mà có [Fe(H₂O)₄Cl₂]²+ và [Ni(H₂O)₄Cl₂]²+. Trong nước, ion [E(H₂O)₆]²+ bị thủy phân một phần làm cho dung dịch có phản ứng axit yếu.

Dihalogenua EX_2 . Khi kết tinh từ dung dịch nước, muối halogenua thường ở dạng tinh thể hiđrat $EX_2.6H_2O$ (trừ florua). Ở điều kiện khác, người ta tách ra được những tinh thể hiđrat với 8, 7, 4, 2 và $1 H_2O$. Các hexahiđrat dễ tan không những trong nước mà cả trong rượu. Ở dạng khan, màu của muối phụ thuộc vào bản chất của anion. Dưới đây là màu của các đihalogenua khan:

	F ⁻	Cl-	Br ⁻	I-
Fe ²⁺	trắng	trắng	vàng-lục	nâu - đỏ
Co ²⁺	đỏ nhạt	xanh lam	lục	đen
Ni ²⁺	lục ,.	vàng	nâu sẫm	đen

Các đihalogenua khan có nhiệt độ nóng chảy và nhiệt độ sối khá cao, ví dụ $FeCl_2$ nóng chảy ở 672°C và sối ở 1030°C (trong hơi của $FeCl_2$ có cân bằng $Fe_2Cl_4 \rightleftharpoons 2FeCl_2$), $CoCl_2$ nóng chảy ở 727°C và sối ở 1049°C, NiF_2 nóng chảy ở 1027°C và sối ở 1627°C. Monohidrat $CoCl_2.H_2O$ tan trong axeton nhưng monohiđrat $NiCl_2.H_2O$ không tan, người ta dựa vào tính chất này để phân chia coban và niken.

Các đihalogenua có thể kết hợp với halogenua kim loại kiềm (M) tạo nên muối kép $M[EX_3]$ hay $M_2[EX_4]$.

Khi nhiệt phân tinh thể hiđrat $CoX_2.6H_2O$ cũng như muối hiđrat khác của Co(II) xảy ra hiện tượng mất nước dần kèm theo sự đổi màu từ đỏ-hồng đến màu xanh lam.

Ví dụ:

Như vậy khác với MgCl₂.6H₂O và MnCl₂.4H₂O, quá trình mất nước của CoCl₂.6H₂O không kèm theo sự thủy phân. Đây là nguyên nhân làm cho tương tác giữa CoCl₂ và H₂O có tính thuận nghịch. Lợi dụng tính chất này, trong thực tế người ta cho thêm coban clorua vào silicagel để làm chất *chỉ thị độ ẩm*. Silicagel là chất làm khô thường được đặt trong các dụng cụ quang học để hút ẩm. Những hạt silicagel (chứa CoCl₂) hoàn toàn khô ráo có màu xanh lam dần dần trở thành hồng khi đã hút bão hòa hơi nước ở trong không khí, lúc đó sẽ không còn khả năng hút ẩm nữa. Lấy những hạt đó ra ngoài, sấy khô đến khi trở lại màu xanh lam, nghĩa là silicagel đã hoàn toàn khô ráo, và đem dùng lại để hút ẩm.

Từ thời xa xưa, khi chưa biết nguyên tố coban, người ta đã dùng nước thải của xưởng sản xuất đồng (ngày nay chúng ta biết dung dịch đó có chứa muối coban) làm mực để viết những dòng chữ không trông thấy trên giấy trắng nhưng thấy được khi hơ nóng giấy trên ngọn lửa nến. Trước đây cách dùng mực đó giúp người ta trao đổi thông tin với nhau một cách bí mật.

Hiện tượng đổi màu từ đỏ-hồng sang xanh lam cũng xảy ra khi thêm HCl, $CaCl_2$ hoặc dung môi hữu cơ vào dung dịch muối coban.

Ví dụ:

$$[Co(H_2O)_6]^{2+} + 4Cl^- = [CoCl_4]^{2-} + 6H_2O$$

Đa số các halogenua MX_2 khan có thể được điều chế trực tiếp từ các đơn chất.

Ví du:

$$Co + Br_2 = CoBr_2$$

 $Ni + Cl_2 = NiCl_2$

Tất cả các đihalogenua có thể điều chế bằng tác dụng của kim loại với dung dịch HX (X là halogen). Làm mất nước khi đun nóng các tinh thể hiđrat thu được trong dòng khí HX sẽ được muối khan.

Ví du:

Fe + 2HCl +
$$6H_2O$$
 = FeCl₂. $6H_2O$ + H_2
FeCl₂. $6H_2O$ \xrightarrow{HCl} FeCl₂ + $6H_2O$

Sunfat ESO_4 là chất dạng tinh thể, $FeSO_4$ có màu trắng, $CoSO_4$ màu hồng và $NiSO_4$ màu vàng chanh. Chúng tương đối bên với nhiệt, độ bên tăng lên từ Fe đến Ni: $FeSO_4$ phân hủy 3 > 580°C, $CoSO_4$ 3 > 600°C và $NiSO_4$ 3 840°C. Tất cả đều hút ẩm và dễ tan trong nước. Khi kết tinh từ dung dịch nước ở nhiệt độ thường thu được tinh thể hiđrat hệ đơn tà $ESO_4.7H_2O$ đồng hình với $MgSO_4.7H_2O$ và $MnSO_4.7H_2O$. Tinh thể $FeSO_4.7H_2O$ có màu lục nhạt, nóng chảy $3 \sim 64$ °C, dễ tan trong nước và rượu, $CoSO_4.7H_2O$ có màu đỏ và nóng chảy $3 \sim 64$ °C, dễ tan trong nước và rượu, $CoSO_4.7H_2O$ có màu đỏ và nóng chảy $3 \sim 64$ °C, dễ tan trong nước và rượu, $CoSO_4.7H_2O$ có màu đỏ và nóng chảy $3 \sim 64$ °C, dễ tan trong nước và rượu, $CoSO_4.7H_2O$ có màu đỏ và nóng chảy $3 \sim 64$ °C, dễ tan trong nước nhưng không tan trong rượu.

Khi đun nóng, những tinh thể hidrat ${\rm ESO_4.7H_2O}$ mất dần nước và cuối cùng biến thành muối khan.

Ví du:

$$FeSO_4.7H_2O \xrightarrow{60-80^{\circ}C} FeSO_4.4H_2O \xrightarrow{110-160^{\circ}C} FeSO_4.H_2O \xrightarrow{300^{\circ}C} FeSO_4$$

Ở nhiệt độ cao hơn, muối khan phân hủy tạo thành oxit.

Ví du:

$$2\text{FeSO}_4 \stackrel{>580^{\circ}\text{C}}{=} \text{Fe}_2\text{O}_3 + \text{SO}_2 + \text{SO}_3$$

Các hiđrat CoSO₄.7H₂O và NiSO₄.7H₂O đều bền ở trong không khí còn FeSO₄.7H₂O kém bền. Khi để trong không khí, tinh thể FeSO₄.7H₂O một mặt *lên hoa* do mất bớt nước, mặt khác bị oxi hóa dần bởi oxi biến thành lớp màu vàng-nâu ở trên bề mặt:

$$4\text{FeSO}_4 + \text{O}_2 + 2\text{H}_2\text{O} = 4\text{FeOHSO}_4.$$

Trong dung dịch nước ion Fe²⁺ cũng bị oxi ở trong khí quyển và trong nước oxi hóa thành ion Fe³⁺. Điều này dễ hiểu khi so sánh thế oxi hóa -khử của các nữa phản ứng sau:

$$[Fe(H_2O)_6]^{3+} + e = [Fe(H_2O)_6]^{2+}, E^0 = +0.771 \text{ V}$$

$$Va$$
 $O_2 + 4H^+ + 4e = 2H_2O_2$ $E^0 = +1.23 \text{ V}$

Trong môi trường kiểm, ion Fe2+ thể hiện tính khử còn mạnh hơn nhiều:

$$Fe(OH)_3 + e = Fe(OH)_2 + OH^-$$
, $E^{\circ} = -0.56 \text{ V}$,

điều đó giải thích khả năng bị oxi hóa nhanh của $Fe(OH)_2$ ở trong không khí trong khi $Co(OH)_2$ bị oxi hóa chậm:

$$Co(OH)_3 + e = Co(OH)_3 + OH^-, E^0 = +0.17 \text{ V}.$$

Dung dịch ${\rm FeSO_4}$ khi có mặt ${\rm H_2SO_4}$ sẽ bền hơn đối với không khí nên được dùng làm chất khử trong nhiều phán ứng.

Ví dụ:

$$10FeSO_4 + 2KMnO_4 + 8H_2SO_4 = 5Fe_2(SO_4)_3 + 2MnSO_4 + K_2SO_4 + 8H_2O$$

$$6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4 = 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + K_2SO_4 + 7H_2O$$

$$4FeSO_4 + H_2SeO_3 + 2H_2SO_4 = 2Fe_2(SO_4)_3 + Se + 3H_2O$$

$$3FeSO_4 + 3AgNO_3 = Fe_2(SO_4)_3 + Fe(NO_3)_3 + 3Ag$$

$$6FeSO_4 + 3Hg(NO_3)_2 = 2Fe_2(SO_4)_3 + 2Fe(NO_3)_3 + 3Hg$$

$$2FeSO_4 + 2NaNO_2 + 2H_2SO_4 = Fe_2(SO_4)_3 + Na_2SO_4 + 2NO + 2H_2O$$

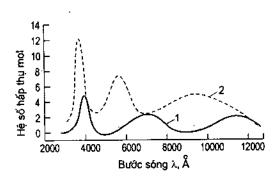
Với sunfat kim loại kiểm hay amoni, các muối ESO_4 dễ tạo nên muối kép $M_2E(SO_4)_2.6H_2O$, trong đó quan trọng đối với thực tế là $(NH_4)_2Fe(SO_4)_2.6H_2O$ được gọi là *muối Mo*. Tinh thể muối Mo có màu lục, dễ kết tinh, không hút ẩm và bền đối với oxi không khí hơn $FeSO_4.7H_2O$ nên thường dùng trong hóa học phân tích để pha dung dịch chuẩn của Fe^{2+} và dùng để định cỡ chất khi đo từ-tính. $FeSO_4.7H_2O$ được dùng để làm chất cắn màu của mực đen và dùng chế các bột màu.

Các tinh thể hiđrat ESO₄.7H₂O được điều chế bằng tác dụng của kim loại, oxit kim loại, cacbonat kim loại với axit sunfuric. Muối khan được điều chế bằng cách làm mất nước của tinh thể hiđrat khi đun nóng (trong chân không hay trong dòng khí H₂ đối với FeSO₄) hoặc khi đun nóng với axit sunfuric đặc.

Phức chất của Fe(II), coban(II) và niken(II)

Các ion Fe^{2+} , Co^{2+} và Ni^{2+} tạo nên nhiều phức chất, độ bền của những phức chất đó tăng lên theo chiều giảm của bán kính ion từ Fe^{2+} (0,74 Å), Co^{2+} (0,72 Å) đến Ni^{2+} (0,69 Å).

Cả ba ion đều tạo nên những phức chất bát diện với số phối trí 6. Ion Fe^{2+} ít có khuynh hướng tạo nên phức chất tứ diện hơn các ion Co^{2+} và Ni^{2+} . Trong các kim loại chuyển tiếp, ion Co^{2+} tạo nên số phức chất tứ diện nhiều nhất. Sở dĩ như vậy là vì những phức chất tứ diện đó có cấu hình electron bền $(\pi_d^*)^4(\sigma_d^*)^3$. Ngoài số ít phức chất tứ diện được tạo nên với phối tử trường yếu, ion Ni^{2+} còn tạo nên nhiều những phức chất hình vuông với phối tử trường mạnh.


Các muối Fe(II), Co(II) và Ni(II) khan kết hợp với khí NH_3 tạo nên muối phức amoniacat chứa ion bát diện $\{E(NH_3)_6\}^{2+}$. Amoniacat sắt(II) kém bền, chỉ tồn tại ở trạng thái rắn hay trong dung dịch bão hòa amoniac, trong nước bị phân hủy tạo thành hidroxit.

Ví du:

$$[Fe(NH_3)_6]Cl_2 + 2H_2O = Fe(OH)_2 + 2NH_4Cl + 4NH_3$$

Amoniacat coban(II) và niken(II) bền hơn (K_b là 2,45.10⁴ và 1,02.10⁸ tương ứng) được tao nên cả trong dụng dịch.

Cation $[\text{Co}(\text{NH}_3)_6]^{2+}$ có màu nâu-vàng còn cation $[\text{Ni}(\text{NH}_3)_6]^{2+}$ có màu tím. Sự thay thế H_2O trong $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$ bằng NH_3 đã làm màu biến đổi từ lục sang tím. Hình 55 trình bày phổ hấp thụ của các ion $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$ và $[\text{Ni}(\text{NH}_3)_6]^{2+}$.

Hình 55. Phổ hấp thụ của $[Ni(H_2O)_s]^{2+}$ (1) Phổ hấp thu của $[Ni(NH_3)_b]^{2+}$ (2)

Qua phổ ta thấy ion bát diện $[\mathrm{Ni}(\mathrm{H_2O})_6]^{2+}$ hấp thụ vùng xanh và vùng đỏ của ánh sáng trông thấy nên ion có màu lục ($\lambda \sim 5500 \text{Å}$) còn ion bát diện $[\mathrm{Ni}(\mathrm{NH_3})_6]^{2+}$ hấp thụ vùng vàng-lục ($\lambda \sim 5710 \text{Å}$) nên ion có màu tím. Nguyên nhân của sự biến đổi từ màu lục sang tím khi phối tử $\mathrm{H_2O}$ được thay thế bằng phối tử $\mathrm{NH_3}$ là sự tăng thông số tách Δ từ $101 \mathrm{kJ/mol}$ ở $[\mathrm{Ni}(\mathrm{H_2O})_6]^{2+}$ đến $129 \mathrm{kJ/mol}$ ở $[\mathrm{Ni}(\mathrm{NH_3})_6]^{2+}$ dẫn đến sự chuyển dịch dải hấp thụ về phía sóng ngắn.

Trong dung dịch nước, amoniacat coban(II) dễ dàng tác dụng với oxi không khí tạo thành amoniacat coban(III):

$$4[Co(NH_3)_6]^{2+} + O_2 + 2H_2O = 4[Co(NH_3)_6]^{3+} + 4OH^{-}$$

Như vậy phối tử tạo phức NH_3 đã làm bền cho trạng thái oxi hóa +3 kém bền của coban vì rằng ở trong nước, nửa phản ứng:

$$[Co(H_2O)_6]^{3+} + e = [Co(H_2O)_6]^{2+}$$
 có thể oxi hóa-khử $E^0 = 1,84V$

nhưng trong dung dịch amoniac, nửa phản ứng:

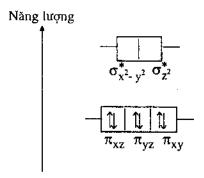
$$[Co(NH_3)_6]^{3+} + e = [Co(NH_3)_6]^{2+}$$
 có thể oxi hoá-khử $E^o = 0.1V$.

Trong những amoniacat Fe(II), Co(II) và Ni(II), muối $[Ni(NH_3)_6](ClO_4)_2$ có độ tan rất bé nên có thể dùng để định lượng niken.

Các muối Fe(II), Co(II) và Ni(II) khi tác dụng với dung dịch xianua kim loại kiểm, mới đầu tạo nên kết tủa: $Fe(CN)_2$ màu nâu-vàng, $Co(CN)_2$ màu đỏ-xám và $Ni(CN)_2$ màu lục, sau đó kết tủa tan trong xianua dư tạo nên những ion phức bát diện $[Fe(CN)_6]^{4-}$ màu vàng và $[Co(CN)_6]^{4-}$ màu đỏ và ion phức hình vuông $[Ni(CN)_4]^{2-}$. Ion $[Fe(CN)_6]^{4-}$ là phức chất bền nhất của sắt (II) còn $[Co(CN)_6]^{4-}$ kém bền, tác dụng với oxi không khí và nước theo các phản ứng:

$$4K_4[Co(CN)_6] + O_2 + 2H_2O = 4K_3[Co(CN)_6] + 4KOH$$

 $2K_4[Co(CN)_6] + 2H_2O = 2K_3[Co(CN)_6] + 2KOH + H_2$


Bởi vậy khi thêm KCN vào dung dịch $CoCl_2$, thực tế được $K_3[Co(CN)_6]$ theo phản ứng:

$$2\text{CoCl}_2 + 12\text{KCN} + 2\text{H}_2\text{O} = 2\text{K}_3[\text{Co(CN)}_6] + 4\text{KCl} + 2\text{KOH} + \text{H}_2$$

Một lần nữa ta thấy phối tử tạo phức, ở đây là ion CN, có ảnh hưởng mạnh đến thế oxi hóa - khử của ion kim loại trong dung dịch vì:

$$[Co(CN)_6]^{3^-}$$
 + e = $[Co(CN)_6]^{4^-}$ có thể oxi hóa - khử $E^o = -0.83V$

Kaliferoxianua $K_4[Fe(CN)_6].3H_2O$ là chất dạng tinh thể đơn tà, có màu vàng, vị mặn và đắng. Ion nghịch từ $[Fe(CN)_6]^4$ có cấu hình electron rút gọn là $(\pi_d)^6$:

Kali feroxianua dễ tan trong nước và axeton nhưng không tan trong rượu. Khi đun nóng ở 87-90°C nó mất nước biến thành muối khan là chất bột trắng hút ẩm, ở 100°C phân hủy tạo thành Fe(CN)₂ và KCN. Nó bền với oxi không khí và dung dịch kiềm nhưng tác dụng với clo và dung dịch axit đặc:

$$2K_4[Fe(CN)_6] + Cl_2 = 2K_3[Fe(CN)_6] + 2KCl$$

 $K_4[Fe(CN)_6] + 4HCl = H_4[Fe(CN)_6] + 4KCl$

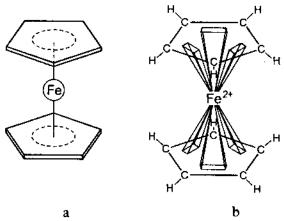
Axit $H_4[Fe(CN)_6]$ là chất dạng tinh thể màu trắng, bền ở trạng thái khô, phân hủy khi đun nóng:

$$3H_4[Fe(CN)_6] = Fe_2[Fe(CN)_6] + 12HCN$$

và có thể tác dụng với O₂, Cl₂, Br₂ và I₂ biến thành H₃[Fe(CN)₆].

Anion phức $[Fe(CN)_6]^{4-}$ phân li rất kém trong dung dịch $(K_b = 7,9.10^{36})$ nên không thể phát hiện được ion Fe^{2+} và ion CN^- trong dung dịch đó. Nó tạo nên với nhiều cation kim loại nặng những muối có màu và ít tan trong nước. Trong hóa học phân tích người ta dùng $K_a[Fe(CN)_6]$ để nhân biết ion Fe^{3+} :

$$Fe^{3+} + K^{+} + [Fe(CN)_{6}]^{4-} = K Fe[Fe(CN)_{6}]$$

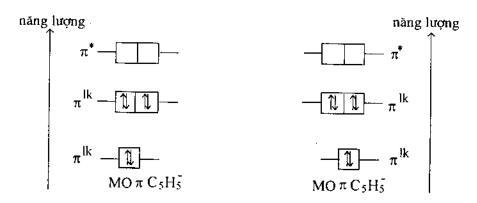

Kết tủa KFe $[Fe(CN)_6]$ màu xanh chàm thẫm đẹp được gọi là xanh Beclin, được dùng làm bột màu cho mực in.

Trước kia kali feroxianua điều chế được khi nấu chảy chất thải của lò sát sinh (máu, da) với sắt vụn trong kali cacbonat nóng chảy nên được gọi là muối vàng máu. Ngày nay muối đó được chế từ sản phẩm phụ chứa xianua thu được ở lò luyện than cốc. Trong phòng thí nghiệm, có thể chế kali feroxianua từ FeSO₄ và KCN:

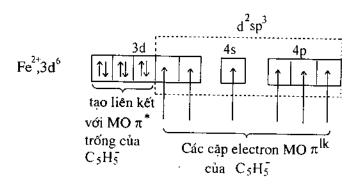
$$FeSO4 + 2KCN = Fe(CN)2 + K2SO4$$

$$Fe(CN)2 + 4KCN = K4[Fe(CN)6]$$

 $Khi \ thêm \ rượu vào dung dịch thu được, những tinh thể nhỏ <math display="block">K_4[Fe(CN)_6].3H_2O \ sẽ lắng xuống.$


Feroxen hay sắt bisxiclopentadienyl (Fe(C_5H_5)₂) là chất dạng tinh thể màu da cam, nóng chảy ở 173°C và sôi ở 249°C. Phân tử Fe(C_5H_5)₂ có dạng hình bánh kẹp với ion Fe²⁺ nằm giữa hai mặt phẳng song song của anion vòng năm cạnh $C_5H_5^-$ (Hình 56) gần giống với phân tử $Cr(C_6H_6)_2$ đã xét trước đây:

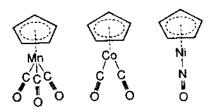
Hình 56. Cấu tạo của phân tử ($Fe(C_3H_3)_2$)


a) Hình bánh kep b) Sơ đồ tạo liên kết

Những obitan nguyên tử $2p_z$ của C vuông góc với mặt phẳng của vòng $C_5H_5^-$, theo lí thuyết MO, tổ hợp với nhau tạo nên ba $MO\pi^{lk}$ và hai $MO\pi^{t}$: các $MO\pi^{lk}$ đã điền đủ electron (5 electron của 5 nguyên tử C và một electron của anion $C_5H_5^-$) còn các $MO\pi^*$ đều trống (Hình 56):

Hình 56. Giản đổ năng lượng các MO π^- trong hai anion $C_sH_s^-$ riêng rẽ

Trong phân tử nghịch từ Fe(C₅H₅)₂, ion Fe²⁺ có cấu hình electron 3d⁶:



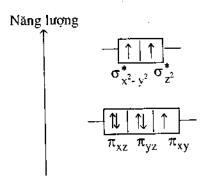
Liên kết hóa học giữa ion Fe^{2+} và hai anion $C_5H_5^+$ được thực hiện theo cơ chế cho-nhận giữa các cặp electron của $MO\pi^{lk}$ trong anion $C_5H_5^+$ với 6 obitan lai hóa d^2sp^3 của ion Fe^{2+} và theo cơ chế π -cho giữa các cặp electron 3d của Fe^{2+} với các $MO\pi^*$ trống của hai vòng $C_5H_5^-$. Như vậy là có 18 electron (8 electron hoá trị của nguyên tử Fe và 10 electron π liên kết của hai gốc C_5H_5) trên 9MO nhiều tâm và chuyển động trong trường của 11 hạt nhân nguyên tử (một của Fe và 10 của C). Trong phân tử này, quy tác khí hiếm cũng được tuân thủ. Liên kết bên như vậy trong phân tử làm cho feroxen rất bền với nhiệt và bền hóa học. Hơi feroxen không phân huỷ ở 470°C. Nó không tan trong nước nhưng tan trong dung môi hữu cơ, không tác dụng với kiểm và dung dịch HCl đặc nhưng tác dụng với các axit có tính oxi hóa.

Feroxen được dùng làm chất xúc tác trong những tổng hợp vô cơ và hữu cơ và dùng làm thuốc chữa bệnh thiếu máu.

Feroxen là hợp chất bánh kẹp đầu tiên đã được điều chế năm 1951. Ngày nay người ta đã biết được những hợp chất tương tự của các kim loại chuyển tiếp đãy thứ nhất như nikeloxen $\mathrm{Ni}(\mathrm{C_5H_5})_2$ màu lục, cobantoxen $\mathrm{Co}(\mathrm{C_5H_5})_2$ màu đỏ thắm, manganoxen $\mathrm{Mn}(\mathrm{C_5H_5})_2$ màu hồng, cromoxen $\mathrm{Cr}(\mathrm{C_5H_5})_2$ màu đỏ nhạt và titanoxen $\mathrm{Ti}(\mathrm{C_5H_5})_2$ màu lục, nhưng những hợp chất này

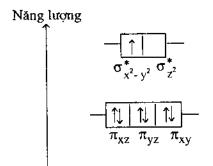
kém bền đối với oxi. Những hợp chất $E(C_5H_5)_n$ có tên gọi chung là *metaloxen*, chúng cũng là những hợp chất π cơ kim. Ngoài ra, nhiều phức chất π hỗn hợp của kim loại chuyển tiếp với vòng xiclopentađienyl và phối tử khác như CO và NO đã được tổng hợp, ví dụ như những hợp chất có công thức cấu tạo dưới đây:

Feroxen đã được điều chế bằng tác dụng của dung dịch NaC₅H₅ vừa mới điều chế với sắt(II) clorua trong dung môi hữu cơ:


$$2C_5H_6 + 2Na = 2NaC_5H_5 + H_2$$

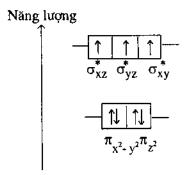
 $2NaC_5H_5 + FeCl_2 = Fe(C_5H_5)_2 + 2NaCl$

Từ dung dịch, feroxen dễ dàng tách ra dưới dạng tính thể.


Cấu tạo phân tử và màu sắc của phức chất coban(II)

Như đã biết phức chất của coban là đối tượng đã được nghiên cứu nhiều vào cuối thế kỉ XIX và từ đó đã rút ra một số quy luật của lí thuyết tạo phức.

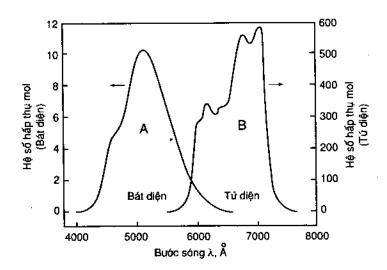
Những ion phức bát diện spin cao như $[Co(H_2O)_6]^{2+}$, $[Co(NH_3)_6]^{2+}$, $[CoF_6]^{4-}$ có cấu hình electron $(\pi_d)^5 (\sigma_d^*)^2$:



Ion phức bát diện với phối tử trường mạnh $[{\rm Co(CN)}_6]^{4-}$ có spin thấp và cấu hình electron $(\pi_d)^6(\sigma_d^{\ *})^1$:

Cấu hình electron đó không đặc trưng cho Co(II), dễ mất đi một electron ở obitan σ^* có năng lượng tương đối cao tạo thành cấu hình bền $(\pi_d)^6$ của ion phức bát diện spin thấp $[\text{Co(CN)}_6]^{3-}$ như đã trình bày trước đây.

Những ion phức tử diện $[\text{CoCl}_4]^{2^-}$, $[\text{CoBr}_4]^{2^-}$, $[\text{CoI}_4]^{2^-}$, $[\text{Co(OH)}_4]^{2^-}$, $[\text{Co(SCN)}_4]^{2^-}$ không tuỳ thuộc vào lực trường của phối tử đều có spin cao vì có cấu hình electron $(\pi_d)^4$ $(\sigma_d^*)^3$:


Đa số phức chất tử diện của coban(II) đều có dạng muối kép, chúng phân huỷ khi pha loãng nước nên màu của dung dịch biến đổi.

Ví du:

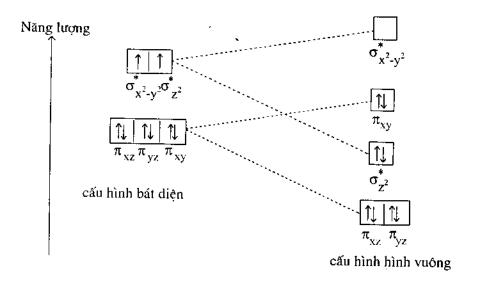
$$[Co(SCN)_4]^{2-} + 6H_2O = [Co(H_2O)_6]^{2+} + 4SCN^{-}$$

Dựa vào tính chất này, trong hóa học phân tích người ta nhận biết ion Co²⁺ trong dung dịch: Co²⁺ kết hợp với SCN⁻ tạo nên [Co(SCN)₄]²⁻ màu xanh lam và khi pha loãng nước, dung dịch màu xanh lam trở lại màu đỏ-hồng.

Phức chất bát diện của Co(II) có màu đỏ-hồng còn phức chất tứ diện của Co(II) có màu xanh lam. Hình 57 trình bày phổ hấp thụ của ion $\{Co(H_2O)_6\}^{2+}$ và $[CoCl_4]^{2-}$:

Hình 57. Phổ hấp thụ của $[Co(H_2O)_6]^{2+}$ (đường cong A)và $[CoCl_4]^{2-}$ (đường cong B) trong vùng trông thấy Thang hệ số hấp thụ của đường cong A ở bên trái

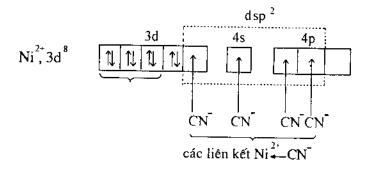
Thang hệ số hấp thụ của đường cong B ở bên phải


Qua giản đồ ở nửa bên trái của hình vẽ, ta thấy ion bát diện $[Co(H_2O)_6]^{2+}$ hấp thụ tương đối yếu những bức xạ vùng lục và sự hấp thụ chuyển dịch về phần tím của quang phổ (cực đại ở $\lambda \sim 5600 \text{ Å}$) nên ion có màu đỏ-hồng. Qua giản đồ nửa bên phải của hình vẽ, ta thấy ion tứ diện $[CoCl_4]^{2-}$ hấp thụ rất mạnh những bức xạ vùng đỏ-da cam của quang phổ nên ion có màu xanh lam.

Sự đổi màu từ đỏ-hồng sang xanh lam của những hợp chất Co(II) đã xét trước đây là kết quả của sự chuyển vỏ phối trí của phối tử bao quanh ion Co^{2+} từ bát diện sang tứ diện. Ngay màu xanh lam của muối khan $CoCl_2$ cũng được coi là màu của ion tứ diện $[CoCl_4]^2$ trong muối $Co[CoCl_4]$. Sự dễ biến đổi giữa cấu hình bát diện và cấu hình tứ diện của phức chất Co(II) được giải thích bằng độ bền không khác nhau lắm của hai nhóm phức chất đó gây nên bởi sự chênh lệch ít về năng lượng làm bền phức chất bởi trường tinh thể.

Phức chất hình vuông của niken(II)

Đa số phức chất của Ni(II) có cấu hình bát diện, những phức chất này, ví dụ như $[Ni(H_2O)_6]^{2+}$, $[Ni(NH_3)_6]^{2+}$ đều thuận từ. Trong những phức chất với số phối trí 4 của Ni, số ít được tạo nên với phối tử trường yếu có cấu hình tứ diện ví dụ như $[NiCl_4]^{2-}$ và số nhiều hơn, với phối tử trường mạnh, có cấu hình hình vuông ví dụ như $[Ni(CN)_4]^{2-}$. Ở đây hiệu ứng Jan-Telo có một vai trò quan trọng: cấu hình bát diện với hai electron trên obitan phân tử phản liên kết σ_d^* dù ghép đôi hay độc thân, về mặt năng lượng, đều không thuận lợi bằng cấu hình hình


vuông với hai electron được ghép đôi. Việc hai electron đó chiếm obitan phân tử $\sigma_{z^2}^*$ có năng lượng thấp hơn của cấu hình tử diện làm giảm năng lượng của hệ và làm bền phức chất:

Sự ghép đôi cặp electron đó càng thuận lợi và sự chuyển từ cấu hình bát diện sang hình vuông càng dễ dàng khi thông số tách năng lượng trong trường phối tử càng lớn, nghĩa là xác suất tạo thành phức chất hình vuông sẽ cực đại nếu phối tử tạo phức thuộc số phối tử trường mạnh.

Tất cả phức chất hình vuông của Ni(II) đều nghịch từ và có các màu đỏ, vàng hay nâu vì có những dải hấp thụ nằm trong vùng có bước sóng $4500\text{-}6000\text{\AA}$ ví dụ như tinh thể $\text{Na}_2[\text{Ni}(\text{CN})_4]$ có màu vàng và tinh thể $\text{K}_2[\text{Ni}(\text{CN})_4]$ có màu đa cam, niken đimetylglioximat có màu đỏ.

Ion $[Ni(CN)_4]^{2^+}$ là anion phức bền nhất của Ni(II), $K_b = 1.10^{34}$. Trong anion phức đó, ion Ni^{2+} có cấu hình electron $3d^8$:

Liên kết gữa ion Ni2+ ở trung tâm với ion CN- ở bốn đỉnh của hình vuông là các liên

kết σ cho-nhận được tạo nên bởi cặp electron tự do của các ion CN^- với bốn obitan lai hóa dsp^2 trống của Ni^{2+} , các cặp electron đ của Ni^{2+} tạo liên kết π -cho với ion CN^- .

Một phức chất hình vuông rất quen thuộc của niken(II) là niken đimetylglioximat được tạo nên giữa ion Ni^{2+} và đimetylglioxim HO-N=C-C=N-OH trong dung dịch NH_3 loãng. CH_3 CH_3

Phản ứng tạo thành phức chất đó được dùng để định tính và định lượng ion Ni²⁺ trong dung dịch. Niken đimetylglioximat là một phức chất vòng càng trung hòa điện, phân tử có cấu hình hình vuông:

$$O...H - O$$

$$\uparrow$$

$$H_3C - C = N$$

$$\downarrow$$

$$O - H ...O$$

$$\downarrow$$

$$O - H ...O$$

Nó là kết tủa màu đỏ, không tan trong nước (tích số tan là $2,3.10^{-25}$), tan trong dung dịch axit mạnh và kiềm mạnh, nhưng không tan trong dung dịch amoniac loãng. Tính tan trong axit mạnh chứng tỏ tính axit yếu của đimetylglioxim ($K_1 = 8.10^{-12}$) và tính tan trong kiềm mạnh chứng tỏ đimetylglioxim là axit hai nắc, muối trung hòa của axit đó tan nhiều hơn muối axit.

Phức chất của kim loại và sự sống

Phức chất quan trọng của kim loại đối với sự sống là phức chất chứa vòng dị vòng pophirin phẳng.

Pophirin tuy không tồn tại trong thiên nhiên nhưng những dẫn xuất của nó như hemoglobin, clorophin và xitocrom có vai trò rất lớn đối với sự sống của sinh vật.

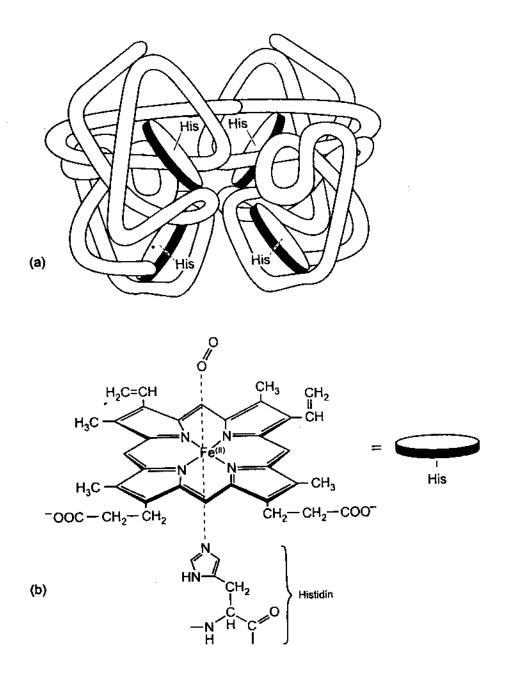
Vòng dị vòng pophirin có thể liên kết với những ion kim loại như Mg²⁺, Fe²⁺, Fe³⁺, Zn²⁺, Cu²⁺ qua bốn nguyên tử N tạo thành phức chất vòng càng hình vuông:

(vòng pophirin)

Phức chất của pophirin với sắt được gọi là hem:

Phức chất của pophirin với Mg²⁺ được gọi là *clorophin*. Dưới đây là công thức cấu tạo của phân tử *clorophin a*, khi thay nhóm metyl trong clorophin a bằng nhóm fomyl ta được *clorophin b*:

Hem và clorophin là hai chất chủ chốt trong cơ chế phức tạp của quá trình biến hóa năng lượng Mặt Trời thành năng lượng sống của sinh vật.


Clorophin có màu lục do hấp thụ bức xạ vùng đỏ (~7000Å) của phổ trông thấy. Khả năng hấp thụ đó được gây nên bởi hệ những liên kết đôi liên hợp trong phân tử. Phân tử clorophin ở trong cây xanh hấp thụ bức xạ và sử dụng năng lượng của bức xạ để khơi mào một

loạt những phản ứng oxi hóa - khử kế tiếp nhau mà cuối cùng là tạo nên glucozơ từ khí cacbonic và nước:

$$6CO_2 + 6H_2O \xrightarrow{h\nu} C_6H_{12}O_6 + 6O_2$$

Đó là phản ứng quang hợp, phản ứng này thu nhiệt.

Hemoglobin là chất hồng cầu có trong máu của người và hầu hết động vật. Nó có khối lượng phân tử 64500 và là protein tetrame chứa bốn nhóm hem. Hình 58a trình bày sơ đồ cấu

Hình 58. Sơ đồ cấu tạo của hemoglobin

tạo tetrame của phân tử hemoglobin. Đại bộ phận của phân tử là protein nhưng trong hình không mô tả chi tiết, lọt vào trong các mạch protein đó có bốn đĩa phẳng là các nhóm hem. Hình 58b trình bày một đĩa đó, gồm kí hiệu của đĩa ở trong sơ đồ cấu tạo của phân tử và công thức cấu tạo của đĩa. Mỗi mạch protein có từ 150 đến 160 dẫn xuất aminoaxit. Mạch protein nối với nhóm hem qua nguyên tử N trong nhóm histidin của protein. Liên kết cho-nhận được tạo nên bởi cặp electron tự do của nitơ và obitan lai hóa d²sp³ trống của ion Fe²+. Liên kết này vuông gốc với mặt phẳng của vòng pophirin trong nhóm hem.

Trong quá trình hỏ hấp của người, hemoglobin (kí hiệu là Hb) theo máu đi đến phổi, khi tiếp xúc với khí O_2 ở các hốc phổi kết hợp với O_2 biến thành oxihemoglobin (kí hiệu là HbO_2) theo phản ứng thuận nghịch (được đơn giản hóa rất nhiều):

$$Hb + O_2(k) \rightleftharpoons HbO_2$$
 (màu đỏ thấm) . (màu đỏ tươi)

Khi hemoglobin tiếp xúc với khí O_2 ở nồng độ cao, cân bằng chuyển dịch sang bên phải và khi khí O_2 có nồng độ thấp, cân bằng chuyển dịch ngược lại.

Nhóm hem trong hemoglobin kết hợp với phân tử O_2 nhờ cặp electron tự do ở một trong hai nguyên tử O của phân tử tạo liên kết cho-nhận với obitan lai hóa d^2sp^3 trống của ion Fe^{2+} và phân tử O_2 chiếm vị trí thứ sáu (Hình 58b) đối diện với nguyên tử N của nhóm histidin. Ion Fe^{2+} có spin cao ở trong nhóm hem kết hợp với phân tử O_2 tạo nên phân tử oxihemoglobin nghịch từ. Sự biến đổi trạng thái spin chưa được giải thích rỡ ràng vì rằng O_2 không phải là phối tử có trường rất mạnh và bản thân lại là phân tử thuận từ.

Oxihemoglobin theo đường tuần hoàn của máu đi đến tế bào của các mô cơ thể, tại đó nồng độ O_2 thấp hơn nên oxihemoglobin chuyển O_2 cho mioglobin và hấp thụ CO_2 đem về phổi. Ở đây, CO_2 không liên kết với ion Fe^{2+} của hem mà liên kết với những aminoaxit nào đó của mạch protein.

Như vậy, chức năng của hemoglobin là vận chuyển O_2 từ phổi đến tế bào chuyển cho mioglobin và vận chuyển ngược CO_2 từ tế bào đến phổi.

Mioglobin có ở tế bào, nhất là của bắp thịt và khối lượng của phân tử là 17000. Phân tử mioglobin gồm có một nhóm hem nối với mạch protein và nằm lọt trong mạch đó, nghĩa là có cấu tạo giống với cấu tạo của một phân tư phân tử hemoglobin (Hình 58b). Nhóm hem của mioglobin cũng như nhóm hem của hemoglobin đều kết hợp giống nhau với phân tử O_2 . Điều khác là mioglobin có ái lực với O_2 rất lớn hơn hemoglobin, dễ dàng chuyển thành oximioglobin khi O_2 ở nồng độ thấp. Sắt ở trong mioglobin và hemoglobin đều ở trạng thái oxi hóa +2, khi kết hợp với oxi nó không chuyển sang trạng thái +3. Tính bền đó được giải thích bằng sự bảo vệ của các mạch protein, mạch protein tạo nên vỏ kị nước bao quanh nhóm hem. Như vậy, mioglobin và hemoglobin không có khả năng oxi hóa-khử, chúng được phân tử O_2 phối trí mà không chuyển electron cho oxi.

Xitocrom có trong tế bào của động vật và thực vật. Phân tử xitocrom có khối lượng 12000, bao gồm một nhóm hem nằm lọt trong mạch protein chứa từ 103 đến 116 aminoaxit. Ion trung tâm trong nhóm hem là Fe²⁺ và Fe³⁺. Chiếm hai vị trí phối trí ở trên và dưới mặt phẳng của vòng pophirin là nguyên tử N có cặp electron tự do ở trong nhóm histidin của protein và nguyên tử S có cặp electron tự do của nhóm metionyl ở trong các phân khác của mạch protein. Trong xitocrom, ion sắt không còn có vị trí phối trí trống nữa nên xitocrom không còn có khả năng kết hợp với O₂ như mioglobin và hemoglobin. Tuy nhiên xitocrom có khả năng oxi hóa-khử. Nó nhận electron của chất là chất khử mạnh hơn và chuyển electron đó cho chất là chất oxi hóa mạnh hơn. Thật vậy, xitocrom là chất trung gian chuyển giao electron trong quá trình quang hợp của thực vật và quá trình hô hấp của động vật.

Trong quá trình trao đổi chất xảy ra ở các mô động vật, xitocrom là những cấu tử trung tâm của một dãy phản ứng oxi hóa kế tiếp nhau dẫn đến việc đốt cháy hoàn toàn những phân tử hữu cơ. Mỗi khi electron chuyển từ cấu tử này sang cấu tử khác trong dãy phản ứng, Fe²⁺ biến thành Fe³⁺ và ngược lại. Toàn bộ dãy phản ứng oxi hóa-khử cuối cùng đó dẫn đến một quá trình ngược với quá trình quang hợp:

$$6O_2 + C_6H_{12}O_6 = 6CO_2 + 6H_2O$$

Năng lượng do phản ứng sinh ra được tích lũy trong cơ thể để sử dụng. Như vậy, toàn bộ hệ clorophin-xitocrom là một cơ chế biến đổi năng lượng của ánh sáng Mặt Trời thành năng lượng hóa học tích lũy trong cơ bắp của sinh vật.

HỢP CHẤT CỦA Fe(III), Co(III) VÀ Ni(III)

Trạng thái oxi hóa +3 kém đặc trung dần từ Fe đến Ni. Điều đó thể hiện ở sự tăng thế điện cực $E^{\circ}_{M^{3+}/M^2}$, từ 0,77, 1,84 đến 2,1V tương ứng. Số hợp chất của Fe(III) gần tương đương với số hợp chất của Fe(II) trong hợp chất đơn giản cũng như trong phức chất. Đối với Co(III) người ta biết một số lớn phức chất rất bền nhưng chỉ biết một số rất ít hợp chất đơn giản kém bền. Niken(III) không tạo nên muối đơn giản và chỉ có rất ít phức chất.

Oxit E_2O_3

Các oxit của E(III) là chất bột không tan trong nước, Fe_2O_3 có màu nâu-đỏ, Co_2O_3 có màu đen. Hiện nay người ta chưa biết được Ni_2O_3 . Sắt(III) oxit có những dạng đa hình giống với nhôm oxit: Fe_2O_3 - α là tinh thể lục phương giống với corunđum và tồn tại trong thiên nhiên dưới dạng khoáng vật hematit, Fe_2O_3 - γ là tinh thể lập phương giống với Al_2O_3 - γ . Dạng α có tính thuận từ còn dạng γ có tính sắt-từ.

Giống với nhôm oxit, sau khi đã được nung nóng Fe_2O_3 không tan trong axit. Cả hai oxit đều bền nhiệt: Fe_2O_3 - α nóng chảy ở khoảng 1550°C, tinh thể lục phương Co_2O_3 kém bền hơn nhiều, phân hủy ở 265°C tạo thành Co_3O_4 . Khi đun nóng, chúng có thể bị H_2 , CO, Al hay

bản thân kim loại (Fe hay Co) khử đến M₃O₄ hay MO hay kim loại:

$$3\text{Co}_2\text{O}_3 + \text{H}_2 \stackrel{\sim 125^{\circ}\text{C}}{=} 2\text{Co}_3\text{O}_4 + \text{H}_2\text{O}$$

$$\text{Co}_3\text{O}_4 + \text{H}_2 \stackrel{\sim 300^{\circ}\text{C}}{=} 3\text{CoO} + \text{H}_2\text{O}$$

$$\text{CoO} + \text{H}_2 \stackrel{> 250^{\circ}\text{C}}{=} \text{Co} + \text{H}_2\text{O}$$

Coban(III) oxit là chất oxi hóa mạnh: tác dụng với axit clohidric giải phóng khí clo và tác dụng với axit sunfuric giải phóng khí oxi:

$$Co_2O_3 + 6HCl = 2CoCl_2 + 3H_2O + Cl_2$$

 $2Co_2O_3 + 4H_2SO_4 = 4CoSO_4 + 4H_2O + O_2$

Sắt(III) oxit có thể tan trong kiểm nóng chảy tạo nên ferit:

$$Fe_2O_3 + 2NaOH = 2NaFeO_2 + H_2O$$

 $Fe_2O_3 + Na_2CO_3 = 2NaFeO_2 + CO_2$

Sắt(III) oxit được dùng làm bột màu của sơn. Cả hai oxit có thể điều chế bằng cách nhiệt phân hidroxit, cacbonat hay nitrat ở trong không khí:

Ví dụ:

$$4FeCO_3 + O_2 \stackrel{500^{\circ}C}{=} 2Fe_2O_3 + 4CO_2$$

$$4Fe(NO_3)_3 \stackrel{700^{\circ}C}{=} 2Fe_2O_3 + 12NO_2 + 3O_2$$

$$4Co(NO_3)_2 \stackrel{180^{\circ}C}{=} 2Co_2O_3 + 8NO_2 + O_2$$

Oxit hỗn hợp E₃O₄

Các oxit E_3O_4 là chất dạng tinh thể lập phương, có tính bán dẫn, Fe_3O_4 có màu đen và ánh kim, giòn, tồn tại trong thiên nhiên dưới dạng khoáng vật manhetit (oxit sắt-từ), Co_3O_4 cũng có màu đen.

Tinh thể Co₃O₄ có kiến trúc kiểu spinen còn Fe₃O₄ có kiến trúc kiểu spinen ngược.

Tinh thể spinen $MgAl_2O_4$ (hay $MgO.Al_2O_3$) bao gồm những tứ diện MgO_4 và bát diện AlO_6 nối với nhau qua đỉnh O chung, nghĩa là ion Mg^{2+} chiếm lỗ trống tứ diện và ion Al^{3+} chiếm lỗ trống bát diện tạo nên bởi những ion O^{2-} được gói ghém sít sao kiểu lập phương.

Trong tinh thể Co_3O_4 , ion Co^{2+} chiếm lỗ trống tứ diện và ion Co^{3+} chiếm lỗ trống bát diện, nghĩa là oxit hỗn hợp có công thức $\overset{+2}{\text{Co}}\overset{+3}{\text{Co}_2}\text{O}_4$. Trong tinh thể Fe_3O_4 , Fe^{2+} chiếm lỗ trống bát diện còn ion Fe^{3+} , một nửa chiếm lỗ trống tứ diện và một nửa chiếm lỗ trống bát diện,

nghĩa là oxit hỗn hợp có công thức $\stackrel{+3}{\text{Fe}}\stackrel{+2}{\text{Fe}}\stackrel{+3}{\text{Fe}}O_4$. Tuy nhiên nếu coi các oxit hỗn hợp này là muối cobantat, muối ferit thì công thức chung của chúng là $\stackrel{+2}{\text{E}}\stackrel{+3}{\text{E}}O_2)_2$.

Các oxit E_3O_4 bền với nhiệt hơn các oxit E_2O_3 : Fe_3O_4 nóng chảy 1538°C và phân hủy ở 1787°C tạo thành FeO còn Co_3O_4 phân hủy ở 940°C tạo thành CoO. Khi đun nóng cả hai oxit có thể bị H_2 , CO, Al... khủ đến kim loại. Giống với Co_2O_3 , Co_3O_4 cũng là chất oxi hóa mạnh:

$$Co_3O_4 + 8HCl = 3CoCl_2 + 4H_2O + Cl_2$$

 $2Co_3O_4 + 6H_2SO_4 = 6CoSO_4 + 6H_2O + O_2$

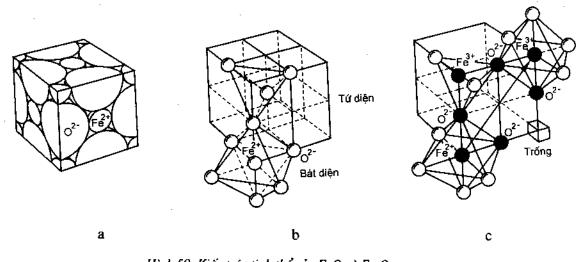
Manhetit cũng như hematit là quặng sắt dùng để luyện gang. Co_3O_4 được dùng để chế loại thuỷ tinh hấp thụ mạnh tia tử ngoại và dùng làm chất xúc tác cho một số phản ứng phân hủy và tổng hợp.

 $Oxit sắt-từ Fe_3O_4$ có thể điều chế bằng cách dùng khí hiđro hay hơi nước (ở 400-500°C) hay khí CO (ở 800°C) để khử Fe_2O_3 .

Còn Co_3O_4 có thể điều chế bằng cách đun nóng bột kim loại coban ở 300°C trong không khí hoặc đun nóng CoO hay $\text{Co}(\text{OH})_2$ ở 100°C trong không khí.

Kiến trúc tinh thể của các oxit sắt

Cả ba oxit sắt là hợp chất không hợp thức và để biến đổi lẫn nhau. Sơ đồ dưới đây biểu diễn sư biến đổi đó:


$$Fe_2O_3 \implies Fe_3O_4 \implies FeO$$

Sự tăng nhiệt độ và tác dụng của chất khử làm cho cân bằng chuyển dịch theo chiều thuận. Ngược lại sự tăng lượng khí oxi làm cho cân bằng chuyển dịch theo chiều nghịch.

Nguyên nhân của sự sai lệch với thành phần hợp thức và sự biến đổi lẫn nhau là Fe_3O_4 , FeO cũng như Fe_2O_3 - γ có kiến trúc tinh thể giống nhau: trong tinh thể, những ion O^{2^-} sắp xếp sít sao kiểu lập phương tạo nên những lỗ trống bát diện và lỗ trống tứ diện, ở tâm của những lỗ trống đó là ion Fe^{2^+} , ion Fe^{3^+} .

Tinh thể FeO có kiến trúc kiểu NaCl (Hình 59a): mỗi ion Fe^{2+} được phối trí bởi 6 ion O^{2-} và mỗi ion O^{2-} được phối trí bởi 6 ion Fe^{2+} , nghĩa là trong những lỗ trống bát diện tạo nên bởi ion O^{2-} có ion Fe^{2+} còn trong lỗ trống tứ diện không có ion (Hình 59b). Nếu trong tất cả những lỗ trống bát diện đều có ion Fe^{2+} thì oxit sắt có công thức lí tưởng là FeO. Khi một số ion Fe^{2+} được thay thế bằng 2/3 những ion Fe^{3+} , tinh thể có kiến trúc khuyết và oxit có công thức $Fe_{1-}O$ (thường x ~ 0,05).

Nếu quá trình thay thế đó tiếp tục cho đến khi 2/3 tổng số ion sắt là Fe³+, một nửa chiếm lỗ trống bát diện và một nửa chiếm lỗ trống tứ diện (Hình 59c), thì tinh thể có kiến trúc

Hình 59. Kiến trúc tinh thể của FeO và Fe₃O₄. a) Một mẩu FeO b) Tinh thể FeO c) Tinh thể Fe₃O₄

khuyết hơn nữa và oxit có công thức Fe_3O_4 . Ion Fe^{3+} có bán kính 0,64 Å , bé hơn ion Fe^{2+} có bán kính 0,76 Å nên có thể chiếm lỗ trống tứ diện bé hơn lỗ trống bát diện. Trong toàn bộ lỗ trống bát diện đó, những ion Fe^{2+} và Fe^{3+} được sắp xếp một cách ngẫu nhiên đến mức những ion đó không phải đổi chỗ cho nhau mà thực tế chỉ cần electron nhảy từ ion này sang ion khác ở bên cạnh (hình 18c) và kết quả là những electron chuyển động trong toàn tinh thể. Đó là nguyên nhân của tính dẫn điện và ánh kim của oxit sắt-từ.

Nếu số ion Fe^{2+} còn lại trong tinh thể oxit sắt-từ được thay thế hết bằng ion Fe^{3+} thì oxit sắt có công thức Fe_2O_3 .

Hidroxit của Fe(III), Co(III) và Ni(III)

Các hidroxit $E(OH)_3$ là chất có thành phần biến đổi $E_2O_3.nH_2O$, tuy nhiên người ta thường biểu diễn chúng bằng công thức quy ước $E(OH)_3$: $Fe(OH)_3$ là kết tủa màu nâu-đỏ có cấu tạo và tính chất giống với $Al(OH)_3$, và $Cr(OH)_3$, $Co(OH)_3$ là kết tủa màu nâu và $Ni(OH)_3$, kết tủa màu đen.

Các hiđroxit $E(OH)_3$ đều bền trong không khí, không tan trong nước (tích số tan của $Fe(OH)_3$, $Co(OH)_3$ là vào khoảng 10^{-38} , 10^{-45} tương ứng) và trong dung dịch NH_3 .

Khi đun nóng nhẹ chúng mất bớt nước biến thành EOOH (hay $E_2O_3.H_2O$), ở nhiệt độ cao hơn $Fe(OH)_3$ mất nước biến thành Fe_2O_3 , $Co(OH)_3$ biến thành Co_3O_4 và CoO còn $Ni(OH)_3$ biến thành NiO:

$$2Fe(OH)_3 \xrightarrow{500^{\circ}C} Fe_2O_3 + 3H_2O$$

$$Co(OH)_3 \xrightarrow{150^{\circ}C} CoOOH \xrightarrow{250^{\circ}C} Co_3O_4 \xrightarrow{940^{\circ}C} CoO$$

$$4Ni(OH)_3 \xrightarrow{500^{\circ}C} 4NiO + O_2 + 6H_2O$$

Khi đun nóng trong dung dịch kiểm mạnh và đặc, Fe(OH)₃ và Co(OH)₃ mới điều chế có thể tan tạo thành hidroxoferit và hidroxocobantat:

$$Fe(OH)_3 + 3KOH = K_3[Fe(OH)_6]$$

 $Co(OH)_3 + 3KOH = K_3[Co(OH)_6]$

Cũng như Fe_2O_3 , $Fe(OH)_3$ tan trong kiểm nóng chảy tạo nên ferit. Người ta đã biết được những ferit $MFeO_2$ (ở đây $M = Li^+$, Na^+ , K^+) và $M(FeO_2)_2$ (ở đây $M' = Mn^{2+}$, Co^{2+} , Ni^{2+} , Cu^{2+}). Những ferit $MFeO_2$ thủy phân mạnh trong dung dịch:

$$NaFeO_2 + 2H_2O = Fe(OH)_3 + NaOH$$

Những ferit M' $(FeO_2)_2$ có kiến trúc tinh thể giống Fe_3O_4 và cũng có tính sắt-từ nên được dùng trong điện kĩ thuật (làm băng từ để ghi âm). Người ta cũng biết được những hợp chất tương tự $MCoO_2$ và $MNiO_2$.

Sắt(III) hidroxit tan để dàng trong axit tạo nên muối Fe(III), còn coban(III) và niken(III) hidroxit là chất oxi hóa mạnh, chúng tan trong dung dịch HCl giải phóng khí clo, trong axit khác giải phóng khí oxi và tạo thành muối Co(II), Ni(II) tương ứng.

Ví dụ:

$$2Ni(OH)_3 + 6HCl = 2NiCl_2 + Cl_2 + 6H_2O$$

Sắt(III) hidroxit được điều chế bằng tác dụng của muối sắt(III) với dung dịch kiềm, coban(III) và niken(III) hidroxit được điều chế bằng tác dụng của những chất oxi hóa mạnh với coban(II) và niken(II) hidroxit.

Ví dụ:

$$2\text{Co(OH)}_2 + \text{H}_2\text{O}_2 = 2\text{Co(OH)}_3$$

 $2\text{Ni(OH)}_2 + \text{KBrO} + \text{H}_2\text{O} = 2\text{Ni(OH)}_3 + \text{KBr}$

Ăc quy kiểm. Ăc quy kiểm do Eđixon phát minh ra năm 1897. Cực dương được làm bằng bột NiOOH, cực âm làm bằng bột Fe ép, cả hai cực nhúng trong dung dịch KOH có cho thêm LiOH để tăng dung lượng của ặc quy. Ăc quy cho dòng điện ~1,8V. Hoạt động của ặc quy kiềm dựa vào phản ứng:

$$2NiOOH + Fe + 2H_2O \xrightarrow{\text{phóng diện}} Fe(OH)_2 + 2Ni(OH)_2$$

Ngày nay trong ặc quy kiểm Ni-Cd người ta thay bột Fe bằng bột Cd.

Ác quy kiểm nhẹ hơn ác quy chì và có thể di chuyển mà không bị hỏng nên được dùng trong các thiết bị lưu động. Nhưng nhược điểm của ác quy kiểm là hệ số tác dụng hữu ích bé hơn ác quy chì.

Muối Fe(III), Co(III) và Ni(III)

Sắt(III) tạo nên muối với đa số anion, trừ những anion có tính khử, coban(III) chỉ tạo nên rất ít muối đơn giản còn niken(III) không tạo nên.

Đa số muối Fe(III) dễ tan trong nước cho dung dịch chứa ion bát diện $[Fe(H_2O)_6]^{3+}$ màu tím nhạt. Khi kết tinh từ dung dịch, muối sắt(III) thường ở dạng tinh thể hiđrat ví dụ như FeF₃.3H₂O màu đỏ, FeCl₃.6H₂O màu nâu-vàng, Fe(NO₃)₃.9H₂O màu tím, Fe(ClO₄).10H₂O màu hồng, Fe₂(SO₄)₃.10H₂O màu vàng và phèn sắt MFe(SO₄)₂.12H₂O (trong đó M = Na⁺, K⁺, Cs⁺, NH₄⁺) màu tím nhạt. Màu của muối khan tùy thuộc vào bản chất của anion ví dụ FeF₃ màu lục, FeCl₃ màu nâu-đỏ, FeBr₃ màu đỏ thẫm, Fe₂(SO₄)₃ màu trắng và Fe(SCN)₃ màu đỏ mặu.

Muối sắt(III) thủy phân mạnh hơn muối sắt(II) nên dung dịch có màu vàng nâu và phản ứng axit mạnh; tùy theo nồng độ, pH của dung dịch có thể vào khoảng 2-3:

$$[Fe(H_2O)_6]^{3+} + H_2O \implies [FeOH(H_2O)_5]^{2+} + H_3O^{4-}$$

$$[FeOH(H_2O)_5]^{2+} + H_2O \implies [Fe(OH)_2(H_2O)_4]^{4-} + H_3O^{4-}$$

Chỉ trong dung dịch có phản ứng axit mạnh (pH < 1) sự thủy phân mới bị đẩy lùi. Ngược lại khi thêm kiềm hoặc đun nóng dung dịch, phản ứng thủy phân xảy ra đến cùng tạo thành kết tủa (gel) hoặc dung dịch keo (sol) của sắt(III) hiđroxit bao gồm những phức chất hiđroxo nhiều nhân do hiện tượng ngưng tụ tạo nên.

Ví du:

$$\begin{bmatrix} H_2O & OH_2 \\ Fe & H_2O & OH_2 \\ H_2O & OH_2 \end{bmatrix}^{3+} \xrightarrow{H_2O} \xrightarrow{H_2O} \xrightarrow{OH_2} \xrightarrow{OH_2} \xrightarrow{OH_2} \xrightarrow{H_2O} \xrightarrow{OH_2} \xrightarrow{OH_2$$

Muối Fe(III) trong dung dịch nước bị khử tương đối dễ bởi những ion $I^{\text{-}}$, $S^{2^{\text{-}}}$, $Sn^{2^{\text{+}}}$, $S_2O_3^{2^{\text{-}}}$.

Ví dụ:

$$Fe_2(SO_4)_3 + 6KI = 2FeI_2 + I_2 + 3K_2SO_4$$

 $2FeCl_3 + H_2S = 2FeCl_2 + 2HCl + S$

$$2\text{FeCl}_3 + \text{SnCl}_2 = 2\text{FeCl}_2 + \text{SnCl}_4$$

 $2\text{FeCl}_3 + 2\text{Na}_2\text{S}_2\text{O}_3 = 2\text{FeCl}_2 + \text{Na}_2\text{S}_4\text{O}_6 + 2\text{NaCl}$

Bởi vậy từ dung dịch không thể tách ra những hợp chất FeI_3 và Fe_2S_3 .

Sắt(III) florua có kiến trúc tinh thể kiểu ReO_3 , khó nóng chảy, thăng hoa ở >1000°C. Người ta đã biết được những tinh thể hiđrat $FeF_3.3H_2O$ màu đỏ và $FeF_3.4,5H_2O$ màu hồng. Sắt(III) clorua có kiến trúc lớp giống với $CrCl_3$. Nó nóng chảy ở 308°C và sôi ở 315°C. Sắt(III) bromua kém bền hơn, trên 100°C đã phân hủy thành $FeBr_2$ và Br_2 .

Ở trạng thái khí và ở 700°C, sắt(III) clorua ở dạng đime Fe_2Cl_6 giống với Al_2Cl_6 :

và ở trên 700°C Fe₂Cl₆ phân hủy thành monome FeCl₃.

Sắt(III) clorua thường được dùng làm chất cấn màu và là chất trung gian trong tổng hợp hữu cơ.

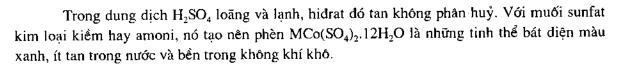
Các trihalogenua khan có thể điều chế bằng tác dụng của halogen với bột sắt hay với sắt(II) halogenua.

Ví du:

$$2\operatorname{FeCl}_2 + 3\operatorname{F}_2 = 2\operatorname{FeF}_3 + 2\operatorname{Cl}_2$$

 $2\operatorname{FeBr}_2 + \operatorname{Br}_2 = 2\operatorname{FeBr}_3$

Coban(III) florua (CoF₃) là chất dạng tinh thể màu nâu, ở trên 400°C phân hủy:


$$2CoF_3 = 2CoF_2 + F_2$$

nên được dùng để điều chế F_2 trong phòng thí nghiệm. Khi đun nóng với các kim loại Na, Mg, Zn, Al, Cu, nó bị khủ đến kim loại. Nó cũng bị nước phân hủy nhưng người ta đã tách được những hiđrat $CoF_3.3,5H_2O$ ở dạng bột màu lục khi điện phân dung dịch muối coban(Π) trong dụng dịch HF 40%.

CoF₃ có thể điều chế khi cho khí F₂ tác dụng với CoF₂ hay CoCl₂ ở 300-400°C.

Coban(III) sunfat ($Co_2(SO_4)_3.18H_2O$) là chất dạng tinh thể hình kim màu lục. Hiđrat này kém bên, có tính oxi hóa, phân hủy nước giải phóng khí O_2 :

$$2Co_2(SO_4)_3 + 2H_2O = 4CoSO_4 + 2H_2SO_4 + O_2$$

Hiđrat $\text{Co}_2(\text{SO}_4)_3.18\text{H}_2\text{O}$ được tạo nên khi điện phân dung dịch CoSO_4 trong axit sunfuric 40% ở 0°C.

Những muối đơn giản trên đây của coban(III) đều không bền đối với nước. Vậy sự tồn tại của các hiđrat $CoF_3.3,5H_2O$ và $Co_2(SO_4)_3.18H_2O$ cho thấy trong đó ion Co^{3+} được phối trí không phải bằng những phân tử H_2O mà những anion như F hay SO_4^{2-} (liên kết qua nguyên tử O). Những phối tử này chắn giữa ion Co^{3+} và những phân tử H_2O và đã làm bền hợp chất ở dạng hiđrat.

Phức chất của sắt(III)

Sắt(III) tạo nên nhiều phức chất. Đa số phức chất đó có cấu hình bát diện ví dụ như $M_3[FeF_6]$, $M_3[Fe(SCN)_6]$, $M_3[Fe(CN)_6]$, một số rất ít có cấu hình tứ diện, ví dụ như $M[FeCl_4]$ (trong đó M là kim loại kiểm). Những phức chất bát diện thường có spin cao, trừ những phức chất tạo nên với phối tử trường mạnh có spin thấp, ví dụ như $[Fe(CN)_6]^{3-}$, $[Fe(phen)_3]^{3+}$ (ở đây phen là o-phenantrolin).

Amoniacat sắt(III) tạo nên khi muối Fe(III) khan tác dụng với khí NH₃. Những hợp chất này kém bền hơn amoniacat sắt(II), chúng phân hủy hoàn toàn trong nước cho nên khi tác dụng với dung dịch amoniac, muối Fe(III) luôn tạo nên kết tủa Fe(OH)₃.

Ion Fe^{3+} trong dung dịch tác dụng với ion thioxianat SCN⁻ tạo nên một số phức chất thioxianato màu đỏ đậm. Hóa học phân tích thường sử dụng phản ứng đó để định tính và định lượng ion Fe^{3+} ngay cả trong dung dịch rất loãng. Màu đỏ đó là màu của một dãy ion và cả phân tử: $FeSCN^{2+}$, $Fe(SCN)^+_2$, $Fe(SCN)^+_3$,... $[Fe(SCN)^-_6]^{3-}$. Màu đỏ của dung dịch đó biến mất khi có mặt ion F^- vì tạo nên anion $[FeF_6]^{3-}$ không có màu. Khi làm bay hơi dung dịch màu đỏ đỏ ở trong chân không, tinh thể hidrat $Fe(SCN)_3.3H_2O$ sẽ tách ra. Bằng phương pháp nghiệm lạnh, người ta xác định được công thức phân tử của hợp chất đó là $Fe[Fe(SCN)_6].6H_2O$.

Kali ferixianua ($K_3[Fe(CN)_6]$), 'một thuốc thử thông dụng trong phòng thí nghiệm, là chất dạng tinh thể đơn tà màu đỏ thường được gọi là *muổi đỏ máu*, dạng bột nhỏ có màu vàng. Nó dễ tan trong nước cho dung dịch màu vàng và là hợp chất hết sức độc.

Kali ferixianua là một trong những phức chất bền nhất của sắt(III), anion $[Fe(CN)_6]^{3^{-1}}$ phân li rất kém trong nước, $K_b = 7.94.10^{43}$. Với thế oxi hóa-khử của nửa phản ứng:

$$[Fe(CN)_6]^{3-}$$
 + e = $[Fe(CN)_6]^{4-}$ là $E^{\circ} = 0.36 \text{ V}$,

kali ferixianua có tính oxi hóa mạnh, nhất là trong môi trường kiểm.

Ví du:

$$6[Fe(CN)_6]^{3-} + 8NH_3 = 6[Fe(CN)_6]^{4-} + 6NH_4^+ + N_2$$
$$2[Fe(CN)_6]^{3-} + H_2O_2 + 2OH^- = 2[Fe(CN)_6]^{4-} + O_2 + 2H_2O$$

Khi đun nóng trong dung dịch kiểm, nó chuyển thành feroxianua.

Ví du:

$$4K_3[Fe(CN)_6] + 4KOH = 4K_4[Fe(CN)_6] + 2H_2O + O_2$$

Phản ứng này cho phép thu được một dòng liên tục khí O_2 khi đổ dung dịch KOH 20% vào kali ferixianua rắn.

Về mặt nhiệt động học, anion $[Fe(CN)_6]^{3-}$ bền hơn anion $[Fe(CN)_6]^{4-}$ nhưng về mặt động học $[Fe(CN)_6]^{4-}$ tỏ ra trơ hơn, chẳng hạn như phản ứng trao đổi phối tử của nó xảy ra chậm hơn so với $[Fe(CN)_6]^{3-}$.

Ví dụ như phản ứng trao đổi:

$$[Fe(CN)_6]^{3-} + H_2O \implies [Fe(CN)_5H_2O]^{2-} + CN^{-}$$

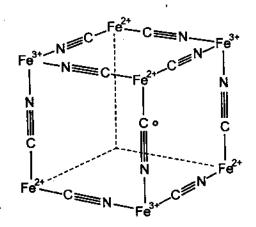
xảy ra với tốc độ lớn hơn so với phản ứng trao đổi:

$$[Fe(CN)_6]^{4-} + H_2O \rightleftharpoons [Fe(CN)_5H_2O]^{3-} + CN^{-}$$

cho nên muối vàng máu ít độc hại hơn muối đỏ máu. Hai ion $[Fe(CN)_6]^{4-}$ và $[Fe(CN)_6]^{3-}$ có cấu tạo giống nhau và chỉ khác nhau ở chỗ trong $[Fe(CN)_6]^{4-}$, trên ba MOπ không liên kết có 6 electron còn trong $[Fe(CN)_6]^{3-}$ chỉ có 5 electron. Vì vậy sự làm bền hệ, nếu kể đến cả tương tác π -cho nữa thì ở $[Fe(CN)_6]^{3-}$ sẽ kém hơn ở $[Fe(CN)_6]^{4-}$.

Anion $[Fe(CN)_6]^{3-}$ tạo nên với nhiều cation kim loại những muối có màu và ít tan. Đặc trưng nhất là phản ứng dùng để nhận biết ion Fe^{2+} trong đung dịch:

$$FeCl_2 + K_3[Fe(CN)_6] = KFe[Fe(CN)_6] + 2KCl$$


hay:

$$Fe^{2+} + K^{+} + [Fe(CN)_{6}]^{3-} = K Fe[Fe(CN)_{6}]$$

Kết tủa KFe[Fe(CN)6] có màu xanh chàm đẹp và được gọi là xanh Tuabun.

Trước đây, trong một thời gian dài người ta coi xanh Beclin có thành phần là

Fe₄[Fe(CN)₆]₃ và xanh Tuabun có thành phần là Fe₃[Fe(CN)₆]₂. Nhưng gần đây, phương pháp nghiên cứu kiến trúc bằng tia Rơnghen cho thấy hai kết tủa đó có cùng một thành phần K Fe Fe(CN)₆ và có kiến trúc như nhau. Kiến trúc đó giống với kiến trúc của sắt(III) ferixianua ⁺³ +3 Fe Fe(CN)₆, là hợp chất có màu nâu và của kali sắt(II) feroxianua K₂ Fe Fe(CN)₆ là kết tủa màu trắng. Tất cả những hợp chất này có mạng lưới lập phương của những ion sắt, nằm trên các cạnh của lập phương là những ion CN⁻ và mỗi ion sắt được 6 ion CN⁻ phối trí. Phức chất ⁺³ +3 Fe Fe(CN)₆ được xây dựng từ những đơn vị kiến trúc lập phương như vậy, ion Fe³⁺ chiếm những nút của mạng lưới. Trong phức chất K₂ Fe Fe(CN)₆, ion Fe²⁺ chiếm những nút của mạng lưới và ion K⁺ chiếm tâm của tất cả các lập phương. Trong phức chất K Fe Fe(CN)₆, ion Fe²⁺ dược phối trí bởi những nguyên tử C và ion Fe³⁺ được phối trí bởi những nguyên tử C và ion Fe³⁺ được phối trí bởi những nguyên tử C và ion Fe³⁺ được phối trí bởi những nguyên tử N của ion CN⁻ còn ion K⁺ chiếm tâm của một nửa số lập phương.

Hình 60. Kiến trúc lập phương của K Fe Fe(CN)6.

Một ion CN^- trong ferixianua có thể thay thế bằng một phân tử trung hòa như H_2O , NH_3 , NO hay một ion như NO_2^- , SO_3^{2-} tạo nên những dẫn xuất có tên gọi chung là *pruxit*. Ví dụ như natri nitropruxit được tạo nên bằng tác dụng của khí NO với dung dịch $Na_3[Fe(CN)_6]$ hay của $NaNO_2$ với dung dịch $Na_4[Fe(CN)_6]$.

Ví dụ:

Na₄[Fe(CN)₆] + NaNO₂ + H₂O = Na₂[Fe(CN)₅NO] + NaCN + 2NaOH Hợp chất Na₂[Fe(CN)₅NO].2H₂O là chất ở dạng tinh thể màu đỏ ngọc, độc, bền ở trong không khí và tan trong nước. Đôi khi nó được dùng để nhận biết ion S^{2-} và ion SO_3^{2-} : với ion S^{2-} dung dịch có màu tím và với ion SO_3^{2-} dung dịch có màu đỏ-hồng.

Ví du:

$$Na_2[Fe(CN)_5NO] + Na_2S = Na_4[Fe(CN)_5NOS]$$

(đỏ) (tím)

Kali ferixianua được điều chế bằng cách dùng khí clo oxi hóa muối vàng máu trong môi trường axit clohidric:

$$2K_4[Fe(CN)_6] + Cl_2 = 2K_3[Fe(CN)_6] + 2KCl$$

hoặc tác dụng của FeCl₃ với KCN:

$$FeCl_3 + 6KCN = K_3[Fe(CN)_6] + 3KCl$$

 $Ch\dot{u}$ ý: Hiện nay người ta chưa biết được muối đơn giản $Fe(CN)_3$. Bởi vậy phản ứng điều chế vừa trình bày trên đây được coi là xảy ra như sau:

$$FeCl_3 + 3KCN + 3H_2O = Fe(OH)_3 + 3KCl + 3HCN$$

 $Fe(OH)_3 + 3HCN + 3KCN = K_3[Fe(CN)_6] + 3H_2O$

Kali trisoxalatoferit ($K_3[Fe(C_2O_4)_3].3H_2O$) là chất dạng tinh thể đơn tà màu lục, tan trong nước. Dưới tác dụng của ánh sáng nó biến thành muối sắt(II) và giải phóng khí CO_2 :

$$2K_3[Fe(C_2O_4)_3] = 2K_2[Fe(C_2O_4)_2] + K_2C_2O_4 + 2CO_2$$

Tính chất quang hóa học đó được dùng để in san các bản vẽ. Bản vẽ được vẽ trên giấy bóng mờ gọi là bản car, đặt bản can lên tờ giấy trắng một mặt đã được tẩm hỗn hợp dung dịch của $K_3[Fe(C_2O_4)_3]$ và $K_3[Fe(CN)_6]$ rồi chiếu sáng mạnh. Ánh sáng đi qua những chỗ không có đường nét vẽ của bản can gây ra sự khử Fe(III) thành Fe(II) theo phản ứng trên. Khi nhúng giấy trắng (đã được chiếu sáng) vào nước, những chỗ được chiếu sáng trên giấy trở nên có màu xanh chàm của xanh Tuabun còn những chỗ ứng với đường nét của bản vẽ có màu trắng.

Kali trisoxalatoferit được tạo nên khi hoà tạn $Fe_2(C_2O_4)_3.5H_2O$ trong dư dụng dịch $K_2C_2O_4$.

Sắt(III) trisaxetylaxetonat $[Fe(C_5H_7O_2)_3]$ là một hợp chất nội phức của Fe(III). Phân tử có cấu tạo:

$$\begin{bmatrix} Fe & O=C & CH_3 \\ O-C & CH_3 \\ O-C & CH_3 \end{bmatrix}$$

Nó là chất dạng tinh thể màu đỏ-lựu, nóng chảy ở 184°C, ít tan trong nước nhưng tan nhiều trong rượu etylic, benzen, clorofom, axeton và cả axetylaxeton.

Sắt(III) trisaxetylaxetonat được tạo nên khi axetylaxeton tác dụng với dung dịch muối sắt(III). Người ta dựa vào phản ứng tạo nên phức chất có màu đỏ để định lượng ion Fe³⁺ trong dung dịch hoặc để nhận biết axetylaxeton.

Sắt(III) trisphenantrolin [Fe(phen)₃]³⁺ là ion phức vòng càng có cấu tạo:

$$\left[Fe \left(\begin{array}{c} N \\ N \\ \end{array} \right)_{3} \right]^{3+}$$

và có màu xanh, được tạo nên trong dung dịch khi muối sắt(III) tác dụng với dung dịch 0,5% o-phenantrolin trong nước.

Trong khi ion [Fe(phen)]2+ có cấu tạo tương tự:

$$\left[\begin{array}{c|c} Fe & \\ \hline \\ N & \\ \end{array}\right]^{2+}$$

được tạo nên trong dung dịch khi muối sắt(II) tác dụng với dung dịch 0.5% o-phenantrolin trong nước có màu đỏ đậm và là ion phức bền nhất của Fe^{2+} đối với không khí:

$$[Fe(phen)_3]^{3+} + e = [Fe(phen)_3]^{2+}, E^0 = 1,12 \text{ V}$$

Người ta dựa vào phản ứng tạo nên phức chất có màu này để định lượng ion Fe²⁺ trong dung dịch.

Phức chất của coban(III)

Người ta biết được rất nhiều phức chất của Co(III). Chính vì những phức chất này dễ được tạo nên và tham gia tương đối chậm vào những phản ứng trao đổi phối tử cho nên đã được nghiên cứu rất kĩ lưỡng từ thời Vecne và Jogenxen, phân lớn những quan niệm về đồng phân, những kiểu phản ứng và tính chất của phức chất bát diện đã ra đời trên cơ sở nghiên cứu những phức chất của Co(III). Hầu hết phức chất của Co(III) có cấu hình bát diện còn phức chất từ diễn rất hiếm.

Tất cả những ion phức bát diện như $[Co(NH_3)_6]^{3+}$, $[Co(CN)_6]^{3-}$, $[Co(NO_2)_6]^{3-}$ đều

nghịch từ trừ một ngoại lệ duy nhất là ion thuận từ $[CoF_6]^{3-}$ với 4 electron độc thân.

Phương pháp chung để điều chế phúc chất của ion Co(III) là oxi hoa muối Co(II) trong dung dịch bằng O_2 hay H_2O_2 khi có mặt chất xúc tác có hoạt tính bề mặt (thường là than hoạt tính) và phối tử. Ví dụ như amoniacat coban(III) được tạo nên bằng cách thổi mạnh dòng không khí trong vài giờ qua dung dịch muối coban(II) khi có mặt amoniac, muối amoni và một ít than hoạt tính:

$$4\text{CoCl}_2 + 4\text{NH}_4\text{Cl} + 20\text{NH}_3 + \text{O}_2 = 4[\text{Co(NH}_3)_6]\text{Cl}_3 + 2\text{H}_2\text{O}$$

hoặc oxi hoá dung dịch amonia
cat coban(II) bằng ${\rm H_2O_2}$ khi có mặt muối amoni:

$$2[Co(NH_3)_6]Cl_2 + 2NH_4Cl + H_2O_2 = 2[Co(NH_3)_6]Cl_3 + 2NH_3 + 2H_2O$$

Sự có mặt một lượng lớn $\mathrm{NH_4Cl}$ đảm bảo cho $\mathrm{NH_3}$ có nồng độ cao ở trong dung dịch.

Khi oxi hoá dung dịch $[\text{Co(NH}_3)_6]\text{Cl}_2$, trong kết tủa thu được ngoài muối màu vàng $[\text{Co(NH}_3)_6]\text{Cl}_3$ còn có một ít kết tủa màu hồng của $[\text{Co(NH}_3)_5\text{H}_2\text{O}]\text{Cl}_3$ và màu đỏ của $[\text{Co(NH}_3)_5\text{Cl}]\text{Cl}_2$. Việc tạo nên những phức chất với vài phối tử khác nhau trong cầu nội là một đặc điểm của ion Co^{3+} . Ngoài những phức chất đơn nhân người ta còn biết nhiều phức chất đa nhân của ion Co^{3+} , trong đó cầu nối giữa các ion Co^{3+} có thể là OH^- , O_2^{2-} , NH_2^- , ví dụ như các ion phức hai nhân $[(\text{NH}_3)_5\text{Co}(\text{O}_2)\text{Co}(\text{NH}_3)_5]^{4+}$, $[(\text{CN})_5\text{Co}-\text{O}-\text{O}-\text{Co}(\text{CN})_5]^{6-}$...

Phức chất coban(III) bền hơn phức chất coban(II). Ví dụ như amoniacat coban(III) rất bền hơn amoniacat coban(III). Amoniacat coban(III) dễ bị thủy phân.

Ví du:

$$[Co(NH_3)_6]Cl_2 + 2H_2O \implies Co(OH)_2 + 4NH_3 + 2NH_4Cl$$

nên chỉ tồn tại trong nước khi dung dịch có dư NH₃ và NH₄Cl trong khi amoniacat coban(III) không những bên trong nước mà cả trong dung dịch HCl đặc và chỉ phân hủy khi tác dụng với dung dịch H₂S. Hằng số bên của $[Co(NH_3)_6]^{2+}$ là 2,45.10⁴ và của $[Co(NH_3)_6]^{3+}$ là 10^{35} . Nguyên nhân của tính bên nhiệt động khác nhau nhiều như vậy không phải chỉ ở chỗ ion Co^{3+} đóng góp phần tĩnh điện lớn hơn trong liên kết hóa học ở trong phức chất mà còn vì ion đó có cấu hình electron $3d^6$ đóng góp phân cộng hóa trị lớn hơn so với ion Co^{2+} có cấu hình electron $3d^7$. Sự kết hợp những phân tĩnh điện và cộng hóa trị trong phức chất coban(III) làm cho độ bên của phức chất coban(III) vượt gấp bội độ bên của phức chất coban(III). Trở lại các phức chất hexaxiano của sắt , ta thấy hằng số bên của $[Fe(CN)_6]^{4-}$ và $[Fe(CN)_6]^{3-}$ là $\sim 10^{36}$ và $\sim 10^{43}$ tương ứng, nghĩa là không sai khác nhau quá lớn. Điều này được giải thích là ion Fe^{2+} với cấu hình electron $3d^6$ đóng góp phần cộng hóa trị trong liên kết hóa học ở phức chất hexaxiano lớn hơn so với ion Fe^{3+} có cấu hình electron $3d^5$.

Natri hexanitrocobantat ($Na_3[Co(NO_2)_6]$), một thuốc thử thông dụng trong phòng thí nghiệm hoá học, là chất ở dạng bột nhỏ màu vàng, tan trong nước, được dùng để định lượng

 K^+ , Rb^+ và Cs^+ vì những hợp chất $K_3[Co(NO_2)_6]$, $Rb_3[Co(NO_2)_6]$ và $Cs_3[Co(NO_2)_6]$ là kết tủa màu vàng ít tan trong nước, rượu và ete.

Natri hexanitrocobantat được điều chế bằng tác dụng của muối coban(II) với dung dịch đặc của $NaNO_2$ và 50% CH_3COOH :

 $CoCl_2 + 7NaNO_2 + 2CH_3COOH = Na_3[Co(NO_2)_6] + NO + 2NaCl + H_2O + 2NaCH_3CO_2$

HỢP CHẤT CỦA SẮT VỚI SỐ OXI HÓA CAO

Khác với coban và niken, ngoài những số oxi hóa +2 và +3, sắt còn có số oxi hóa đặc trung là +6. Người ta đã biết được những $ferat \stackrel{+1}{M_2} FeO_4$ và $\stackrel{+2}{M} FeO_4$ là chất dạng tinh thể màu đỏ-tím có kiến trúc đồng hình với cromat và sunfat. Các ferat đều kém bền với nhiệt, K_2FeO_4 phân hủy ở 200°C và BaFeO₄ phân hủy ở 120°C.

Về tính tan, ferat giống với cromat và sunfat: các ferat kim loại kiềm và canxi tan trong nước còn các ferat stronti và bari không tan. Khi tan trong nước, ferat phân hủy giải phóng khí oxi.

Ví dụ:

$$4K_2FeO_4 + 10H_2O = 4Fe(OH)_3 + 3O_2 + 8KOH$$

vì vày ferat chi tương đối bền trong môi trường kiềm mạnh.

Ferat là chất oxi hóa rất mạnh ($E^{\circ}_{FeO_4^{2-}/Fe^{3+}}=2,1$ V), mạnh hơn cả KMnO₄ và phản ứng xảy ra đặc biệt nhanh chóng trong môi trường axit, ví dụ như nó oxi hoá NH₃ đến NO₃⁻, Cr^{3+} đến CrO_4^{2-} , AsO_3^{3-} đến AsO_4^{3-} v.v...

Ferat được nghiên cứu kĩ hơn hết là K_2FeO_4 và Ba FeO_4 . Kali ferat được điều chế bằng cách oxi hóa huyền phù $Fe(OH)_3$ trong dung dịch kiềm mạnh bằng Cl_2 hay Br_2 :

$$2\text{Fe}(OH)_{3} + 3Br_2 + 10\text{KOH} = 2K_2\text{Fe}O_4 + 6\text{KBr} + 8H_2O$$

hoặc nung chảy hỗn hợp $\mathrm{Fe_2O_3}$, $\mathrm{KNO_3}$ và KOH :

$$Fe_2O_3 + 3KNO_3 + 4KOH = 2K_2FeO_4 + 3KNO_2 + 2H_2O$$

Những năm gần đây đã có thông báo về việc điều chế được sắt tetraoxit FeO₄ là hợp chất tương tự OsO₄. Oxit đó được tạo nên khi đun nóng ferat trong dung dịch kiềm mạnh. Tổọ của FeO₄ tạo nên trong dung dịch chỉ đạt đến 10%, có thể chiết được bằng dung môi hữu ví dụ như CCl₄. Nó rất kém bền, trong nước và trong dung môi hữu cơ đều phân hủy giải phóng khí oxi.

CHƯƠNG VIII

CÁC NGUYÊN TỐ NHÓM VIIIB. HỌ PLATIN

Họ platin gồm các nguyên tố: ruteni (Ru), rođi (Rh), palađi (Pd), osmi (Os), iriđi (Ir) và platin (Pt). Đây là những nguyên tố nặng nhất trong nhóm VIIIB.

Tuy có những nét chung, những nguyên tố họ platin khác với nhau nhiều về độ bền của các trạng thái oxi hóa, về hóa học lập thể của các hợp chất v.v... Những nguyên tố này cũng không giống nhiều với nguyên tố họ sắt (Fe, Co và Ni) trừ sự giống nhau về những phức chất với phối tử có khả năng tạo liên kết π ví dụ như CO chẳng hạn. Dưới đây là một số đặc điểm của các nguyên tố họ platin (Bảng 20).

Bảng 20 Đặc điểm của các nguyên tố họ platin

Nguyên	Số	Năng lượng ion hóa, eV			Thế điện cực chuẩn, V	
_tố (E)	thứ tự	I_1	I_2	I_3	I,	M ²⁺ /M
Ru	44	7,36	16,76	28,46	46,52	0,45
Rh	45	7,46	18,07	31,05	45,63	0,60
Pd	46	8,33	19,42	32,93	48,77	1,0
Os	76	8,7	15	25	40	0,85
Ir [77	9,2	16	27	39	1,15
Pt	78	9,0	8,56	28,55	41,13	1,2

Với cấu hình electron chung $(n-1)d^{6-10}ns^{0-2}$ của nguyên tử, các nguyên tố họ platin có nhiều số oxi hóa khác nhau trong các hợp chất:

Ru	Rh	Pd
1-8	1,2,3,4,6	2,3,4,5
Os	Ir	Pt
2,3,4,6,8	1-6	2–6

trong đó những số oxi hóa đặc trưng nhất của nguyên tố biến đổi đều theo hàng và nhóm ở trong họ:

Ru	Rh	Pd
4	3	2
Os	Ir	Pt
6,8	3,4	2,4

Theo hàng từ trái qua phải, số oxi hóa của các nguyên tố giảm xuống. Điều đó được giải thích bằng sự tăng độ bền của các obitan d khi gần đạt đến trạng thái bão hòa electron. Trong nhóm từ trên xuống dưới, độ bền của số oxi hóa đặc trưng tăng lên. Điều này có liên quan đến sự tăng tính cộng hóa trị của liên kết hóa học vì sự tăng độ dễ biến dạng của lớp vỏ gần đủ 18 electron khi số lớp electron của nguyên tử tăng lên (nguyên tố nặng hơn có lớp 32 electron). Như vậy, sự biến đổi độ bền của trạng thái oxi hóa đặc trưng từ trên xuống dưới ở trong các nhóm của nguyên tố họ platin cũng giống với các nhóm kim loại chuyển tiếp khác.

Các nguyên tố họ platin có một số nét chung sau đây:

- Trong các hợp chất, các nguyên tố họ platin tạo nên liên kết hóa học chủ yếu là liên kết cộng hóa trị
- Những hợp chất; oxit, halogenua, sunfua, photphua ... không có vai trò quan trọng về lí thuyết và thực tiễn.
- Điểm nổi bật của các nguyên tố họ platin là khả năng tạo nên nhiều phức chất. Liên kết giữa kim loại và phối tử trong các phức chất đó bền hơn trong các phức chất của Fe, Co và Ni. Số hợp chất đơn giản của nguyên tố họ platin chỉ là hàng chục trong khi số phức chất của chúng có đến hàng ngàn. Các phức chất thường của palađi và platin có độ bền cao của liên kết cộng hóa trị nên trơ về mặt động học.
- Tất cả các nguyên tố, trừ Pd và Pt, đều tạo nên những cacbonyl kim loại. Đa số các cacbonyl đó là hợp chất nhiều nhân. Cả 6 nguyên tố đều tạo nên những halogenocacbonyl, ví dụ như $[Rh(CO)_2Cl_2]$, $[Pt(CO)_2Cl_2]$..., và những phức chất hỗn hợp của CO và phối tử khác.
- Đa số phức chất của kim loại họ platin ở trạng thái hóa trị 3 và 4 có cấu hình bát diện. Những hợp chất của các ion với cấu hình d⁸ như Rh(I), Ir(I), Pd(II) và Pt(II) thường là phức chất hình vuông hoặc có cấu hình với số phối trí là 5.
- Các kim loại có hoạt tính xúc tác cao, nhất là Pd và Pt. Riêng platin kim loại có thể xúc tác cho 70 phản ứng hóa học khác nhau.

CÁC ĐƠN CHẤT

Tính chất lí hóa học

Các nguyên tố họ platin là kim loại màu trắng bạc và có ánh kim, đẹp nhất là kim loại platin. Tinh thể của kim loại Ru và Os có mạng lưới lục phương, bốn kim loại còn lại có mạng lưới tinh thể lập phương tâm diện. Dưới đây là một số hằng số vật lí quan trọng của kim loại (Bảng 21)

Bảng 21 Hằng số vật lí quan trọng của các kim loại họ platin

Kim loại (E)	Nđnc, °C	Nđs, °C	Nhiệt thăng hoa kJ/mol	Tỉ khối	Độ cứng (thang Moxơ)	Độ dẫn điện (Hg=1)
Ru	2250	4200	603	12,4	6,4	10
Rh	1963	3700	447	12,4	6,0	19
Pd	·1554	2940	381	12,0	4,8	10
Os	3027	5000	670	22,7	7,0	11
Ir	2450	4500	669	22,6	6,25	16
Pt	1769	3800	556	21,5	4,3	10

Các kim loại họ platin đều khó nóng chảy và khó sôi, nhất là Os. Osmi còn có nhiệt thăng hoa và tỉ khối lớn nhất trong họ, riêng về tỉ khối Os đứng đầu trong tất cả các chất. Điều này được giải thích bằng độ bền của liên kết kim loại trong osmi tăng lên nhờ sự tạo thành nhiều liên kết cộng hóa trị dẫn đến sự gói ghém sít sao của các nguyên tử trong kim loại.

Về tính chất cơ học, các kim loại họ platin khác với nhau rõ rệt. Platin là kim loại dẻo dai nhất, dễ kéo sợi và dễ dát mỏng: 1g platin có thể kéo thành sợi dài 5km và lá platin có thể mỏng tới micromet. Palađi mềm, iriđi cứng và chắc, ruteni và osmi giòn, osmi có thể nghiên trong cối thành bọt.

Các kim loại họ platin có khả năng tạo hợp kim với nhau và với nhiều kim loại khác. Hợp kim của platin với 10% rođi dùng làm cặp nhiệt điện để đo nhiệt độ đến 1400°C, hợp kim của iridi với vonfram dùng làm cặp nhiệt điện để đo nhiệt độ đến 2360°C. Hợp kim của các kim loại họ platin với nhau được dùng nhiều làm chất xúc tác, điện cực trong điện phân, chi tiết của các máy đo chính xác, công tắc điện, đồ trang sức. Hợp kim của osmi với iriđi dùng làm hạt gạo của ngòi bút máy, hòn bi của bút bi. Hợp kim của platin với 10% iriđi dùng làm thước mét chuẩn quốc tế.

Về hóa học, các kim loại họ platin kém hoạt động hơn nhiều so với kim loại họ sắt, chúng là những kim loại quý cùng với bạc và vàng.

Ở điều kiện thường, các kim loại họ platin không bị rỉ trong không khí. Khi đun nóng, các kim loại Ru và Os ở dạng bột tác dụng với oxi tạo nên RuO₂ và OsO₄, phản ứng xảy ra chậm khi k n loại ở dạng tấm. Ở nhiệt độ nóng đỏ, các kim loại Rh, Ir và Pd tác dụng với oxi tạo nên Rh₂O₃, IrO₂ và PdO nhưng ở nhiệt độ cao hơn, các oxit phân hủy và kim loại ngừng tác dụng với oxi. Bền nhất với oxi ở nhiệt độ cao là platin; những chén nung, bát nung, thuyên nung dùng trong phòng thí nghiệm làm bằng platin.

Tất cả các kim loại họ platin tác dụng với khí clo khi đun nóng. Brom lỏng tác dụng chậm với platin ở nhiệt dộ thường. Khi đun nóng, các kim loại họ platin tác dụng với hầu hết nguyên tố không-kim loại như S, P, Si, As ...

Đối với các axit, palađi và platin hoạt động hơn các kim loại khác. Ruteni, osmi, rođi và iriđi dạng tấm thực tế không tan trong axit hay hỗn hợp axit nào cả. Palađi có thể tác dụng với dung dịch HNO₃ đặc và H₂SO₄ đặc. Platin chỉ tan trong cường thủy:

$$3Pt + 4HNO_3 + 18HCl = 3H_2PtCl_6 + 4NO + 8H_2O$$

Các kim loại họ platin tác dụng với kiềm nóng chảy khi có mặt oxi hay chất oxi hóa khác. Bởi vậy không được nấu chảy kiềm hay nung hỗn hợp chứa kiềm trong chén hay bát làm bằng platin mà dùng chén hay bát bằng sắt, niken hoặc bạc. Một điểm nữa cần chú ý là không được đun nóng các chén bát platin ở trong vùng giữa của ngọn lửa đèn khí vì ở đó cacbon tác dụng với platin tạo thành cacbua.

Tương tác của Pt và Pd với hiđro phân tử cũng là điểm nổi bật. Ở áp suất thường và 80° C, một thể tích kim loại platin có thể hấp thụ 100 và kim loại palađi hấp thụ 900 thể tích H_2 . Khả năng hấp thụ đó của palađi là phù hợp với công thức $PdH_{0,7}$. Người ta chưa biết rõ hoàn toàn đây là quá trình tạo thành palađi hiđrua hay là quá trình palađi hòa tan "vật lí" khí hiđro nhưng quá trình hấp thụ đó đã được dùng để tinh chế khí hiđro. Do tan được trong palađi kim loại, khí hiđro có thể khuếch tán qua màng mỏng làm bằng palađi và để lại các tạp chất khí khác ở bên kia màng. Phương pháp tinh chế này cho phép điều chế khí H_2 có độ tinh khiết rất cao.

Trạng thái thiên nhiên và lịch sử phát hiện

Các nguyên tố họ platin luôn đồng hành với nhau và là nguyên tố rất hiểm. Trữ lượng của chúng trong vỏ Trái Đất là vào khoảng $10^{-6}\%$ tổng số nguyên tử. Chúng tồn tại trong thiên nhiên ở dạng tự sinh. Platin tự sinh chứa ~80% Pt, ~10% các kim loại khác họ platin và ~10% Fe, Au, Cu và tạp chất khác. Những lượng nhỏ kim loại họ platin còn có trong một số khoáng vật của Ni và Cu.

Platin tự sinh được phát hiện lần đầu tiên vào thế kỉ thứ XVI trong cát có vàng ở nước Columbia (Nam Mỹ). Đến năm 1750, người ta mới bắt đầu nghiên cứu platin thô đó, biết nó là

kim loại và đặt tên là vàng trắng (aurum album). Tên gọi *platin* về sau này xuất phát từ chữ *plata*, tiếng Tây Ban Nha là bạc. Đến năm 1845, platin được điều chế ở dạng kim loại tính khiết.

Vào những năm 1803-1804, các kim loại Rh, Pd, Os và Ir được tìm ra khi nghiên cứu platin thô đã thu được ở Columbia. Rođi và palađi do nhà hóa học người Anh Vonlaston (W.H.Wollaston) tìm ra, còn osmi và iriđi do nhà hóa học Tennen (S.Tennent, 1761-1815) cũng là người Anh tìm ra. Tên gọi *rođi* (rhodium) của nguyên tố xuất phát từ chữ *rhodon*, tiếng Hi Lạp nghĩa là màu hồng (tách được muối phức màu hồng của kim loại đó). Tên gọi *palađi* của nguyên tố được lấy từ tên của tiểu hành tinh *Pallas* vừa được phát hiện trước đó một năm. Osmi và iriđi tìm được trong bã rắn còn lại khi hòa tan platin thô vào cường thủy. Tên gọi *osmi* của nguyên tố xuất phát từ chữ *osme*, tiếng Hi Lạp có nghĩa là có mùi (hơi OsO₄ có mùi khó chịu). Tên gọi *iriđi* của nguyên tố xuất phát từ chữ *iriđis*, tiếng La Tình nghĩa là cẩu vồng (dung dịch các muối của kim loại có màu khác nhau).

Bốn mươi năm sau nhà hóa học người Nga là Clau (K.Claus, 1796-1864) tìm được nguyên tố ruteni khi nghiên cứu các kim loại họ platin thu được từ quặng ở núi Uran. Tên gọi ruteni (ruthenium) của nguyên tố xuất phát từ chữ Ruthenia, là tên Hi Lạp cổ của nước Nga (Russia).

HỢP CHẤT CỦA Ru VÀ Os

Các cacbonyl kim loại

Các nguyên tố ruteni và osmi tạo nên những hợp chất cacbonyl kim loại giống với sắt như $Ru(CO)_5$ là chất lỏng không màu và $Os(CO)_5$ cũng là chất lỏng không màu, những cacbonyl nhiều nhân như $Ru_3(CO)_{12}$ là chất rắn màu lục và $Os_3(CO)_{12}$ là chất rắn màu vàng, nóng chảy ở $224^{\circ}C$ và tạo nên những clorocacbonyl như $[Ru(CO)_4Cl_2]$ và $[Os(CO)_4Cl_2]$...

Các đioxit EO,

Ruteni đioxit (RuO₂) và osmi đioxit (OsO₂) là chất ở đạng tinh thể màu đen có kiến trúc kiểu rutin. RuO₂ bền với nhiệt hơn OsO₂, nó nóng chảy ở 955°C và phân hủy ở trên 1100°C còn OsO₂ phân hủy ở trên 500°C. Khi đun nóng chúng đều bị H_2 khử thành kim loại.

Chúng không tan trong nước, chỉ tan trong dung dịch HCl đặc tạo nên phức chất hexacloro:

$$EO_2 + 6HCI = H_2ECI_6 + 2H_2O$$

Ruteni đioxit được tạo nên khi nung bột kim loại ruteni trong khí oxi ở 600°C hoặc đốt cháy ruteni(IV) sunfua trong dòng khí oxi:

$$Ru + O_2 = RuO,$$

$$RuS_2 + 3O_2 = RuO_2 + 2SO_2$$

Osmi đioxit được tạo nên khi đun nóng bột kim loại osmi trong hơi OsO4.

Hợp chất của Ru(VI) và Os(VI)

Osmi hexaflorua (OsF₆) là chất đạng tinh thể màu vàng, nóng chảy ở $34,5^{\circ}$ C và sôi ở 47.5° C. Hơi của nó không có màu và độc.

Osmi hexaflorua rất hoạt động về mặt hóa học. Nó tác dụng với nước tạo nên OsO₄, OsO₂ và HF. Nó tác dụng với thủy tinh, với nhiều kim loại và nguyên tố không-kim loại.

Osmi hexaflorua được tạo nên cùng với OsF_4 và OsF_8 khi đun nóng osmi kim loại trong khí flo.

Rutenat và osmat kim loại. Người ta không biết được những trioxit RuO_3 và OsO_3 cũng như những oxiaxit H_2RuO_4 và H_2OsO_4 nhưng người ta biết được rutenat và osmat các kiểu M_2EO_4 , $M_2[EO_2X_4]$... trong đó M là kim loại kiềm, X là halogen. Ở đây chúng ta xét rutenat và osmat kim loại kiềm thường gặp hơn hết là các hiđrat K_2RuO_4 . H_2O và K_2OsO_4 . $2H_2O$.

Monohidrat kali rutenat ($K_2RuO_4.H_2O$) là chất dạng tinh thể màu lục tan trong nước, mất nước ở trên 200°C và phân hủy ở trên 400°C. Khi dun nóng nó bị khí H_2 khử đến RuO_2 . Mặt khác nó bị khí clo oxi hóa trong dung dịch tạo thành RuO_4 :

$$K_1RuO_4 + Cl_1 = RuO_4 + 2KCl$$

Nó bị axit sunfuric phân hủy theo phản ứng:

$$2K_2RuO_4 + 2H_2SO_4 = 2K_2SO_4 + 2RuO_2 + O_2 + 2H_2O_3$$

Kali rutenat được tạo nên khi nấu chảy ruteni kim loại hay ruteni đioxit trong hỗn hợp của KOH và KClO₃ (hay KNO₃):

$$Ru + 2KOH + KCIO_3 = K_2RuO_4 + KCI + H_2O$$

 $RuO_2 + 2KOH + KNO_3 = K_2RuO_4 + KNO_2 + H_2O$

Dihidrat kali osmat (K₂OsO₄.2H₂O) là chất dạng tinh thể màu tím, tan trong nước, mất nước ở trên 200°C. Nó bị axit sunfuric phân hủy theo phản ứng:

$$2K_2O_5O_4 + 2H_2SO_4 = 2K_2SO_4 + O_5O_4 + O_5O_2 + 2H_2O$$

Kali osmat được tạo nên khi khử OsO₄ trong dung dịch kiềm bằng rượu hoặc natri nitrit.

Ví dụ:

$$OsO_4 + 2KOH + KNO_2 = K_2OsO_4 + KNO_3 + H_2O$$

Các tetraoxit EO

Phân từ tetra oxit EO_4 có cấu hình tử diện đều, tinh thế có mạng lưới phân tử nên dễ nóng chảy và dễ sởi, tan nhiều trong CCl_4 .

Ruteni tetraoxit (RuO₄) là chất dạng tinh thể màu vàng đa cam, nóng chảy ở 25°C và sối ở 40°C. Hơi của nó có mùi giống ozon và độc. Nó tan vừa phải trong nước. Trên 100°C, nó phân hủy và gáy nổ:

$$RuO_4$$
 = RuO_2 + O_2

Tuy nhiên ở trên 1000°C, phán ứng này xảy ra ngược lại.

Là chất oxi mạnh, RuO_4 gây nổ khi tác dụng với rượu, giải phóng khí clo khi tác dụng với axit clohiđric đặc:

$$RuO_4 + 8HCl = RuCl_4 + 2Cl_2 + 4H_2O$$

Nó tác dụng với kiểm tạo thành rutenat và giải phóng khí oxi:

$$2RuO_4 + 4NaOH = 2Na_2RuO_4 + O_2 + 2H_2O$$

Ruteni tetraoxit được tạo nên khi nung kim loại osmi trong khí oxi ở 1000°C hoặc khi kim loại ruteni tác dụng với hipoclorit ở nhiệt độ thường hoặc khi clo hóa các hợp chất của Ru(IV) trong dụng dịch kiềm:

$$Ru + 4KOCI = RuO_4 + 4KCI$$

 $RuCl_4 + 2Cl_2 + 8KOH = RuO_4 + 8KCI + 4H_2O$

Osmi tetraoxit (OsO_4) là chất dạng tinh thể không màu, nóng chảy ở 40° C và sôi ở 130° C. Hơi của nó có mùi giống clo và rất độc. Đây là hợp chất thường gặp nhất của osmi. Nó hoạt động về mặt hóa học: tan trong nước tạo thành phức chất $H_2[OsO_4(OH)_2]$, dung dịch này có phản ứng trung tính (vì sự phân li axit tương đương với sự phân li bazơ), tan trong dung dịch kiểm đặc tạo nên *peosmat* màu đỏ:

$$OsO_4$$
 + 2KOH = $K_2|OsO_4(OH)_2|$

và tan trong dung dịch florua kim loại kiểm tạo nên floropeosmat màu đỏ-nâu:

$$OsO_4 + 2KF = K_2[OsO_4F_2]$$

Osmi tetraoxit là chất oxi hóa mạnh, tác dụng với dung dịch HCl đặc giải phóng khí clo:

$$OsO_4 + 8HCI = OsCl_4 + 2Cl_2 + 4H_2O$$
,

trong dung dịch kiểm oxi hóa nitrit thành nitrat, axit oxalic thành khí CO2:

Ví dụ:

$$OsO_4 + 2KOH + 3H_2C_2O_4 = K_2[OsO_2(C_2O_4)_2] + 2CO_2 + 4H_2O_4$$

Osmi tetraoxit cũng là một trong những chất xúc tác thường dùng. Nó được tạo nên khi đốt kim loại osmi trong không khí hoặc bằng tác dụng của axit nitric đặc với những oxit của osmi hóa tri thấp.

$$O_{S}(r) + 2O_{2}(k) = O_{S}O_{4}(r)$$
 $AG^{o} = -299kJ$

HOP CHẤT CỦA Rh VÀ Ir

Các cacbonyl kim loai

Các nguyên tố rođi và iriđi tạo nên những cacbonyl kim loại nhiều nhân giống với coban như $Rh_2(CO)_8$ là chất rắn màu da cam nóng chảy ở $76^{\circ}C$, $Ir_2(CO)_8$ là chất rắn màu lục thăng hoa, $Rh_4(CO)_{12}$ là chất rắn màu đỏ, $Ir_4(CO)_{12}$ là chất rắn màu vàng và $E_6(CO)_{16}$. Ngoài ra, chúng còn tạo nên những halogenocacbonyl ví dụ như $Ir(CO)_3X$ chẳng hạn.

Hợp chất của Rh(III) và Ir(III)

Người ta biết được những oxit E_2O_3 , hiđroxit $E(OH)_3$ kém bền, halogenua EX_3 và một số hợp chất khác ví dụ như các muối $E_2(SO_4)_3$, $Rh(NO_3)_3$... Trạng thái oxi hóa +3 bền nhất đối với Rh và kém bền đối với Ir.

Rodi(III) oxit (Rh₂O₃) là chất dạng tinh thể màu xám có mạng lưới giống Al₂O₃- α . Nó rất bền với nhiệt, phân hủy thành nguyên tố ở 1200°C trong chân không. Khi đun nóng, oxit bị H₂ khủ thành kim loại.

Nó không tan trong nước, tan trong dung dịch HCl đặc nhờ tạo nên phức chất:

$$Rh_2O_3 + 12HCl = 2H_3[RhCl_6] + 3H_2O$$

Hiđroxit tương ứng Rh(OH)₃, đúng hơn là Rh₂O₃.nH₂O, là kết tủa màu lục, kém bền, dễ mất nước khi đun nóng tạo thành oxit, được tạo nên khi muối Rh(III) tác dụng với dung dịch kiềm.

Rođi(III) oxit được tạo nên khi nung bột Rh kim loại hay RhCl₃ hay Rh(NO₃)₃ trong không khí ở 800°C hoặc khi muối Rh(III) tác dụng với dung dịch kiểm nóng:

$$4Rh(r) + 3O_2(k) = 2Rh_2O_3(r), \Delta G^{\circ} = -209kJ/mol$$

 $4RhCl_3 + 3O_2 = 2Rh_2O_3 + 6Cl_2$
 $2RhCl_3 + 6NaOH = Rh_2O_3 + 6NaCl + 3H_2O$

Iridi(III) oxit (Ir_2O_3) là chất bột màu xanh chàm, σ trên 400° C phân hủy theo phản ứng:

$$2Ir_2O_3$$
 $>400^{\circ}C$ $=$ $3IrO_2$ + Ir

và ở trên 1100°C phân hủy thành nguyên tố. Khi đun nóng, nó bị khí H_2 khử thành kim loại.

Nó tan trong nước, trong dung dịch axit sunfuric loãng và axit clohidric đặc:

$$Ir_2O_3 + 3H_2SO_4 = Ir_2(SO_4)_3 + 3H_2O$$

 $Ir_2O_3 + 12HCl = 2H_3[IrCl_6] + 3H_2O$

Trong axit nitric đặc và nóng nó chuyển thành IrOs:

$$Ir_2O_3 + 2HNO_3 = 2IrO_2 + 2NO_2 + H_2O_3$$

Hidroxit tương ứng Ir(OH)₃, đúng hơn là Ir₂O₃, mH₂O, là kết tủa màu lục, kém bền và khi có mặt không khí dễ chuyển thành kết tủa màu xanh chàm Ir(OH)₄. Hiđroxit Ir(OH)₃ được tạo nên khi muối Ir(III) tác dụng với dụng dịch kiểm trong khí quyển CO₃.

Iriđi(III) oxit được tạo nên khi nung nóng hỗn hợp rắn của K3IrCl6 và Na5CO3:

$$2K_3IrCl_6 + 3Na_2CO_3 = Ir_2O_3 + 6KCl + 6NaCl + 3CO_2$$

hoặc đun nóng hợp chất của Ir(III) trong dung dịch kiềm:

$$2Na_3IrCl_6 + 6NaOH = Ir_2O_3 + 12NaCl + 3H_3O$$

Muối phức Na_3IrCl_6 có màu lục thẫm dễ tan là chất đầu để điều chế các hợp chất của Ir và được tạo nên khi hòa tan $IrCl_3$ trong dung dịch NaCl bão hòa. Các muối K_3IrCl_6 và $(NH_4)_3IrCl_6$ ít tan hơn. Những muối phức này đều dễ biến thành kim loại khi đun nóng trong khí H_2 .

Các trihalogenua EX3. Người ta biết được tất cả các trihalogenua của Rh và Ir:

RhF_3	$RhCl_3$	$RhBr_3$	RhI_3
màu đó	màu đỏ	màu đỏ-nâu	màu đen
IrF ₃	I rCl ₃	IrBr ₃	IrI ₃ .
màu đỏ	màu lục	màu luc	màu luc

Tất cả đều là chất rắn, bền với nhiệt, phân hủy ở nhiệt độ cao, tan ít trong nước, dạng hiđrat tan dễ hơn và phân li ít trong dung dịch. Chúng tác dụng với các halogenua kim loại, axit halogenhiđric tạo thành các phức chất hexahalogeno.

Các trihalogenua được tạo nên bằng tác dụng trực tiếp của các nguyên tố hoặc bằng tác dụng của oxit với các axit halogenhiđric hoặc bằng tác dụng của kim loại với halogenua của kim loại hóa trị cao hơn.

Hợp chất của Rh(IV) và Ir(IV)

Trạng thái oxi hóa +4 là đặc trưng đối với Ir. Người ta biết được các oxit EO_2 , các hidroxit $E(OH)_4$ kém bền, một số tetrahalogenua và các phức chất.

Rođi diovit (RhO₂) là chất dạng tinh thể màu đen có kiến trúc kiểu rutin, được tạo nên khi nấu chảy kim loại rođi trong hỗn hợp KOH và KNO₃ ở 800-900°C.

Iridi dioxit (IrO₂) là chất dạng tinh thể màu đen có kiến trúc kiểu rutin, rất bền với nhiệt, ở 1100°C phân hủy thành nguyên tố. Nó không tan trong nước và axit. Khi đun nóng bị H₂ khử đến kim loại. Nó tan được trong dung dịch axit clohidric đặc khi có mặt NaCl nhờ tạo thành phức chất:

$$IrO_{2} + 4HCl + 2NaCl = Na_{2}[IrCl_{6}] + 2H_{2}O$$

Iriđi đioxit được tạo nên khi nung kim loại trong khí oxi ở 1000°C hoặc nung nóng hỗn hợp rấn của K₂IrCl₆ và Na₂CO₃:

$$Ir(r) + O_2(k) = IrO_2(r), \Delta G^{\circ} = -117kJ$$

 $K_2IrCl_6 + 2Na_2CO_3 = IrO_2 + 2KCl + 4NaCl + 2CO_2$

Amoni hexacloroiridiat(IV) (NH₄)₂[IrCl₆] là chất ở dạng tinh thể màu đỏ thẩm, tan ít trong nước nguội, tan nhiều trong nước nóng. Người ta lợi dụng tính ít tan của muối này để tách iriđi ra khỏi kim loại khác của họ platin. Nó không tạo nên hiđrat.

Khi nung nóng, nó phân hủy tạo thành kim loại:

$$(NH_4)$$
, $[IrCl_6] = Ir + 2NH_4Cl + 2Cl_2$

Khi đun nóng với dung dịch kiềm, nó phân hủy tạo thành IrO2:

$$(NH_4)_3[IrCl_6] + 4NaOH = IrO_2 + 4NaCl + 2NH_4Cl + 2H_2O$$

Amoni hexacloroiridiat(IV) được tạo nên bằng phản ứng trao đổi giữa Na₂IrCl₆ hay K₂IrCl₆ với NH₄Cl. Các muối Na₂IrCl₆ và K₂IrCl₆ được tạo nên khi đun nóng hỗn hợp của iriđi kim loại và NaCl hay KCl trong khí quyển clo:

$$Ir + 2MCl + 2Cl_2 = M_2IrCl_6$$
 (ở đây M=Na, K)

hoặc hòa tan $1{\rm rO}_2$ trong axit elohiđric đặc khi có mặt NaCl hay KCl.

HƠP CHẤT CỦA Pơ VÀ Pt

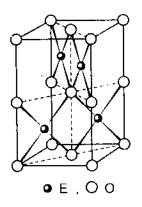
Các cacbonyl kim loại

Khác với Ni, các nguyên tố palađi và platin không tạo nên tetracacbonyl nhưng tạo nên những clorocacbonyl như [Pd(CO)₂Cl₂] màu vàng kém bền và [Pt(CO)₂Cl₂] không màu và bền.

Hợp chất của Pd(II) và Pt(II)

Trạng thái oxi hóa +2 là đặc trưng đối với Pd.

Các monooxit EO là chất ở dạng tinh thể màu đen. Trong tinh thể, các hình vuông EO₄ nối với nhau qua cạnh chung tạo thành mạch, mạch này vuông góc với mạch kia (Hình 61).


Palađi(II) oxit (PdO) là oxit bền nhất của palađi, phân hủy thành nguyên tố ở 877°C, platin(II) oxit (PtO) phân hủy ở 507°C. Khi đun nóng, chúng bị H₂ khử thành kim loại. Chúng không tan trong nước, riêng PtO không tan cả trong axit.

Các oxit được tạo nên khi nung muội palađi và muối platin trong dòng khí oxi.

Ví dụ:

$$2Pd + O_{2} = 2PdO$$

Các hidroxit $E(OH)_2$ là chất dạng kết tủa màu đen, không tan trong nước, tan trong axit. Platin(II) hidroxit $Pt(OH)_2$ có khả năng oxi hóa -

Hình 61. Kiến trúc của PdO và PtO

khử: bi O3 oxi hóa đến Pt(OH)4 và bị dung dịch H2O2 khử đến kim loại.

Paladi(II) hidroxit $Pd(OH)_2$ được tạo nên khi đun sôi dung dịch muối Pd(II) với kiềm. Platin(II) hidroxit được tạo nên khi dung dịch $K_2[PtCl_4]$ tác dụng với kiềm trong khí quyển CO_2 .

Các đihalogenua EX2. Người ta biết được tất cá các đihalogenua của Pđ và Pt:

PdF_2 màu tím nhạt	$\operatorname{PdCl}_2 ext{-}lpha$ màu đỏ thẫm	PdBr ₂ màu đỏ-đen	PdI ₂ màu đen
PtF ₂	PtCl ₂ -β	PtBr ₂	PtI ₂
màu vàng lục	màu đen-đỏ	màu nâu	màu đen

Tất cả đều là chất rắn khá bền nhiệt, ở nhiệt độ cao phân hủy thành nguyên tố. Đáng chú ý hơn hết là PdCl₂ và PtCl₂.

 $Paladi(II)\ clorua\ (PdCl_2)\ dạng\ \alpha\ là chất dạng tinh thể màu đỏ thẫm, có kiến trúc mạch được tạo nên bởi những hình vuông <math>PdCl_4$ nối với nhau qua nguyên tử $Cl\ chung$

Palađi(II) clorua khan hút ẩm, tan vừa phải trong nước và thực tế không phân li. Khi kết tinh từ dung địch, nó ở dạng đihiđrat PdCl₂.2H₂O. Dạng hiđrat tan nhiều hơn dạng khan và là chất đầu để điều chế hợp chất khác của Pd. Để thực hiện các phản ứng, người ta thường dùng

dung dịch $H_2[PdCl_4]$ được tạo nên khi $PdCl_2$ tan trong dung dịch HCl. Một phản ứng quan trọng được dùng để định tính khí CO là tác dụng của dung dịch $PdCl_2$ với khí CO tạo thành Pd kim loại.

Palađi(II) clorua được tạo nên khi nung muội hay bọt palađi trong dòng khí clo.

Platin(II) clorua (PtCl₂) dạng β là chất bột màu đen-đỏ và là claste Pt₆Cl₁₂ trong mạng lưới tinh thể. Claste Pt₆Cl₁₂ có cấu tạo giống các ion claste Nb₆Cl²⁺₁₂ và Ta₆Cl²⁺₁₂ đã xét trước đây. Nó có thể kết hợp với khí CO tạo nên những phức chất clorocacbonyl khá bền Pt(CO)Cl₂ và Pt(CO)₂Cl₂.

Platin(II) clorua không tan trong nước, không tạo nên hiđrat, chỉ tan trong dung dịch HCl đặc nóng nhờ tạo nên phức chất:

$$PtCl_2 + 2HCl = H_2[PtCl_4]$$

Axit tetracloroplatino này chỉ tồn tại trong dung dịch có màu đỏ, muối của nó tách được ở dạng tự do.

Platin(II) clorua được tạo nên khi nung bọt platin trong khí Cl_2 ở 500°C hoặc khi đun sôi dung dịch $\text{H}_2[\text{PtCl}_4]$. Dung dịch này được tạo nên bằng tác dụng của axit cloroplatinic $\text{H}_2[\text{PtCl}_6]$ với dung dịch axit oxalic bão hòa;

$$H_2[PtCl_6] + H_2C_2O_4 = H_2[PtCl_4] + 2CO_2 + 2HCl_4$$

Các phức chất của Pd(H) và Pt(H) có nhiều, trong đó ion phức có cấu hình hình vuông, phức chất của Pt(H) bền hơn phức chất của Pd(H). Những phức chất thường gặp có các dạng: $M_2[EX_4]$ (trong đó M là ion kim loại kiềm hay NH_4^+ , X là CI^- , Br^- , I^- , CN^- , NO_2^-), $[E(NH_3)_4]X_2$ và $[E(NH_3)_2X_2]$ (trong đó X là CI^- , Br^- , NO_2^-).

Những muối phức quan trọng và tan được là $M_2[PdCl_4]$ màu vàng và $M_2[PtCl_4]$ màu đỏ. Những muối phức này của Pt(II) là chất đầu để điều chế hợp chất khác của platin.

Điểm nổi bật là sự tạo thành những phức chất trong đó Pd(II) và Pt(II) có mặt đồng thời trong cả cation và anion, ví dụ như $[Pd(NH_3)_4][PdCl_4]$ và $[Pt(NH_3)_4][PtCl_4]$.

Hợp chất $[Pd(NH_3)_4][PdCl_4]$ là kết tủa màu đỏ lẫn đầu tiên được Vokelen tổng hợp khi thêm NH_3 vào dung dịch $H_2[PdCl_4]$:

$$H_2[PdCl_4] + 6NH_3 = [Pd(NH_3)_4]Cl_2 + 2NH_4Cl$$

 $H_2[PdCl_4] + [Pd(NH_3)_4]Cl_2 = [Pd(NH_3)_4][PdCl_4] + 2HCl$

nên được gọi là $mu\delta i \ Vokelen$. Muối này bền, khi để lâu không san sẻ phối tử cho nhau để tạo thành $[Pd(NH_3)_2Cl_2]$. Tuy nhiên, khi tổng hợp nếu cho thêm dư NH_3 ngay từ đầu thì thu được kết tủa màu vàng có thành phần $[Pd(NH_3)_2Cl_2]$. Như vậy, khi tổng hợp hợp chất của kim loại họ platin, chất tạo thành không chỉ phụ thuộc vào bản chất của các chất phản ứng mà còn phụ

thuộc vào cả thứ tự trộn lẫn chất, nồng độ chất và cả yếu tố thời gian nữa. Muối Vokelen màu đỏ và muối [Pd(NH₃)₂Cl₂] màu vàng là một ví dụ về kiểu đồng phân phối trí.

Tương tự với muối Vokelen, hợp chất $[Pt(NH_3)_4][PtCl_4]$ là kết tủa màu lục, gọi là muối Manhut lục, tạo nên khi trộn dung dịch $[Pt(NH_3)_4]Cl_2$ với dung dịch $K_2[PtCl_4]$:

Sự tạo thành muối màu lục từ cation $[Pt(NH_3)_4]^{2+}$ không màu và anion $[PtCl_4]^2$ màu đỏ là bất thường và là hậu quả của kiến trúc tinh thể: các cation và anion hình vuông sắp xếp xen kẽ với nhau tạo nên một mạch thẳng của các nguyên tử Pt. Tương tác giữa những nguyên tử Pt đó làm chuyển dịch sự hấp thụ của $[PtCl_4]^{2-}$ từ vùng lục (ion có màu đỏ) sang vùng đỏ nên sinh ra màu lục. Khi đun nóng đến 300° C, muối Manhut chuyển thành trans- $[Pt(NH_3)_2Cl_2]$.

Tính chất đặc trưng của phức chất $[E(NH_3)_2X_2]$ là hiện tượng đồng phân cis-trans. Ví dụ hợp chất $[Pt(NH_3)_2Cl_2]$ có hai đồng phân: dạng cis có màu vàng da cam được gọi là muối Payron (Peirone) và dạng trans có màu vàng nhạt. Từ năm 1969 người ta đã phát hiện dạng cis có hoạt tính sinh học có thể chữa trị bệnh ung thư và được phẩm đó được gọi gọn là cisplatin.

Phương pháp điều chế hai dạng đồng phân cis-trans đó cũng khác nhau căn bản.

Dạng cis được tạo nên khi thay thế hai ion clo trong phức chất K₂[PtCl₄] bằng amoniac:

$$K_2[PtCl_4] + 2NH_3 = [Pt(NH_3)_2Cl_2] + 2KCl$$

(đồng phân cis)

Dạng trans được tạo nên khi thay thế hai phân tử amoniac trong phức chất $[Pt(NH_3)_4]Cl_2$ bằng ion clo:

$$[Pt(NH_3)_4]Cl_2 + 2HCl = [Pt(NH_3)_2Cl_2] + 2NH_4Cl$$

 $(\mathring{dong phan } trans)$

Quy tắc ảnh hưởng trans do nhà hóa học người Nga Secnhiaep (I.I. Chernyaev) đề ra năm 1926 cho phép hiểu rõ chiều hướng của phản ứng thay thế các phối tử trong phúc chất. Theo quy tắc đó, một số phối tử tạo ra điều kiện thay thế dễ dàng những phối tử ở vị trí trans đối với nó. Thực nghiệm đã xác định được dãy hoạt động ảnh hưởng trans của các phối tử trong các phức chất của Pt(II) là:

$$CN^- > NO > NO_2^- > \Gamma^- > SCN^- > Br^- > Cl^- > F^- > OH^- > NH_3 > Py > H_2O$$

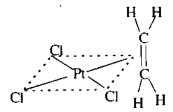
Hoạt động ảnh hưởng trans khác nhau của NH_3 và Cl có thể giải thích những phản ứng điều chế các đồng phân cis và trans của $[Pt(NH_3)_2Cl_2]$ vừa trình bày trên đây:

$$\begin{bmatrix} H_3N & NH_3 \\ H_3N & NH_3 \end{bmatrix}^{2+} \xrightarrow{+Cl^-} \begin{bmatrix} Cl & NH_3 \\ H_3N & NH_3 \end{bmatrix}^{+} \xrightarrow{+Cl^-} \begin{bmatrix} Cl & NH_3 \\ H_3N & NH_3 \end{bmatrix}^{0}$$
(không màu) (vàng) (vàng nhạt)

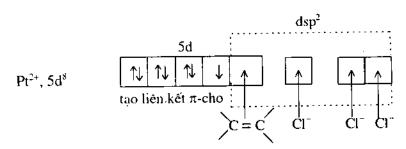
$$\begin{bmatrix} Cl & Cl \\ Cl & Pt & Cl \\ Cl & & Cl \end{bmatrix}^{2-} \xrightarrow{+NH_3} \begin{bmatrix} H_3N & Cl \\ Cl & Cl \end{bmatrix} \xrightarrow{-+NH_3} \begin{bmatrix} H_3N & Cl \\ H_3N & Pt \\ & Cl \end{bmatrix}^0$$
(da cam) (vàng da cam)

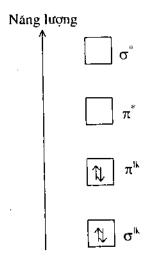
Vì ion Cl⁻ thể hiện ảnh hưởng trans mạnh hơn phân từ NH₃ nên trong giai đoạn thứ hai của hai phản ứng trên đây, phối từ được thay thế nằm ở vị trí trans đối với ion Cl⁻. Như vậy, từ ion [Pt(NH₃)₄]²⁺ chỉ có thể điều chế đồng phân *trans* và từ ion [PtCl₄]²⁻ chỉ có thể điều chế đồng phân *cis*. Quy tắc ảnh hưởng trans có một vai trò rất lớn lao trong việc tổng hợp các phức chất.

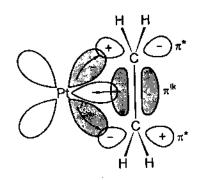
Những đồng phân cis-trans của $[Pt(NH_3)_2Cl_2]$ tác dụng với khí clo tạo nên những đồng phân cis-trans tương ứng của $[Pt(NH_3)_2Cl_4]$, trong đó Pt(II) được oxi hóa thành Pt(IV) nhưng thành phần và tính đối xứng của cầu phối trí trong hợp chất ban đầu không biến đổi:


Điều này chứng tỏ tính trơ động học lớn của phức chất của platin(II). Lợi dụng tính trơ động học của phức chất của Pt(II) và vận dụng quy tắc ảnh hưởng trans người ta có thể tổng hợp những phức chất hình vuông của Pt(II) với bốn phối tử khác nhau, ví dụ như:

$$\begin{bmatrix} Py & Cl \\ H_2O & NH_3 \end{bmatrix}^+ \qquad va \qquad \begin{bmatrix} Py & Cl \\ Br & NH_3 \end{bmatrix} \qquad (Py = Pyridin)$$


Muối Xayze K[PtCl₃(C₂H₄)] là phức chất được nghiên cứu nhiều của Pt(II), do nhà hóa học người Đan Mạch là Xayze (W. C. Zeise) đã tổng hợp từ năm 1827. Đây là phức chất π cơ kim được tổng hợp đầu tiên; một trong những phối từ ở trong cầu phối trí của Pt(II) là phân từ


 C_2H_4 , Ion $\lceil PtCl_3(C_2H_4) \rceil$ có cấu tạo:


trong đó, ion Pt2+ có cấu hình electron 5d8 và ở trạng thái lại hóa dsp2:

Ba obitan lai hóa dsp^2 trống nhận ba cặp electron của ba ion Cl⁻, obitan lai hóa thứ tư nhận cặp electron ở obitan phân tử π^{lk} của cặp nguyên tử C=C có liên kết đôi. Giản đồ năng lượng được đơn giản hóa của các obitan phân tử trong liên kết đôi C=C là:

Một cặp electron 5đ của Pt^{2+} tạo liên kết π -cho với obitan phân tử trống của cặp nguyên tử C=C. Dưới đây là sơ đồ biểu diễn sự che phủ giữa obitan phân tử π^{lk} của cặp nguyên tử C=C với obitan lai hóa dsp^2 của ion Pt^{2+} và giữa obitan phân tử π^* của cặp nguyên tử C=C với obitan nguyên tử 5đ của ion Pt^{2+} :

Muối Xayze là chất dạng tinh thể màu vàng, không bền nhiệt, tan nhiều trong nước, không tác dụng với axit, bị kiểm và dung dịch NH₃ phân hủy:

$$K[PtCl_3(C_2H_4)] + 2KOH = Pt(OH)_2 + C_2H_4 + 3KCl$$

 $K[PtCl_3(C_2H_4)] + 4NH_3 = [Pt(NH_3)_4]Cl_2 + C_2H_4 + KCl$

Nó được tạo nên khi etylen tác dụng với dung dịch K₂[PtCl₄] trong axit clohiđric đặc:

$$K_2[PtCl_4] + C_2H_4 = K[PtCl_3(C_2H_4)] + KCl$$

Hợp chất của Pd(IV) và Pt(IV)

Trạng thái oxi hóa +4 là đặc trưng đối với Pt. Các hợp chất của Pd(IV) có khá năng oxi hóa, dễ chuyển thành hợp chất của Pd(II).

Các tetrahidroxit E(OH)₄. Người ta không biết rõ các đioxit PdO₂ và PtO₂ nhưng biết được các hidroxit E(OH)₄, đúng hơn là các hidrat của các oxit đó EO₂.xH₂O.

Păladi tetrahidroxit Pd(OH)₄, đúng hơn là PdO₂.2H₂O, là kết tủa màu đỏ thẩm và platin tetrahidroxit Pt(OH)₄, đúng hơn là PtO₂.2H₂O, là kết tủa màu nâu. Chúng kém bền với nhiệt, khi dun nóng đều phân hủy:

$$2Pd(OH)_4$$
 = $2PdO + O_2 + 4H_2O$
 $400^{\circ}C$ = $2PtO + O_2 + 4H_2O$

Chúng không tan trong nước, tan trong dung dịch axit và dung dịch kiểm.

Ví dụ;

$$Pt(OH)_4 + 6HCl = H_2[PtCl_6] + 4H_2O$$

 $Pt(OH)_4 + 2NaOH = Na_2[Pt(OH)_6]$

Khi tác dụng với axit clohiđric, Pd(OH)4 có thể giải phóng khí Cl2.

Palađi tetrahiđroxit được tạo nên khi hợp chất của Pd(IV) tác dụng với dung dịch kiềm:

$$K_2[PdCl_6] + 4KOH = Pd(OH)_4 + 6KCl$$

hoặc khi oxi hóa hợp chất của Pd(II) trong môi trường kiềm bằng khí ozon:

$$K_2[PdCl_4] + 2KOH + O_3 + H_2O = Pd(OH)_4 + 4KCl + O_2$$

Platin tetrahidroxit được tạo nên khi đun sôi PtCl4 trong dung dịch kiểm.

 $C\acute{a}c$ tetrahalogenua EX_4 . Người ta biết được palađi tetraflorua (PdF_4) và tất cả các tetrahalogenua của platin:

 PdF_4 PtF_4 $PtCl_4$ $PtBr_4$ PtI_4 màu đỏ gạch màu nâu-vàng màu nâu-đỏ màu nâu-đen màu đen

Tất cả các tetrahalogenua đều khá bền với nhiệt, PtF₄ phân hủy thành nguyên tố ở 700-800°C, PtI₄ phân hủy ở 370°C...

Chúng tan trong nước và bị phân hủy mạnh, nhất là tetraflorua. Tính chất rất đặc trưng của các tetrahalogenua là dễ kết hợp với axit halogenhiđric và halogenua kim loại kiềm.

Ví đụ:

$$PtCl_4 + 2HCl = H_2[PtCl_6]$$

 $PtCl_1 + 2NaCl = Na_2[PtCl_6]$

Tất cả các tetra halogenua EX, được tổng hợp chủ yếu từ các đơn chất.

Các phức chất của Pd(IV) và Pt(IV). Các phức chất của Pd(IV) có rất ít hơn và kém bên hơn so với phức chất của Pt(IV). Tuy nhiên trong phức chất, Pd(IV) bền hơn trong hợp chất đơn giản. Số phức chất của Pt(IV) tương đương với số phức chất của Pt(II).

Phức chất thường gặp nhất của Pd(IV) chứa anion PdX_6^{2-} , trong đó $X = F^-$, Cl^- và Br^- . Những phức chất này đều dễ bị khử thành hợp chất của Pd(II). Trong nước, anion PdF_6^{2-} bị thủy phân nhanh chóng còn $PdCl_6^{2-}$ (màu đỏ) và $PdBr_6^{2-}$ (màu đen) phân hủy trong nước nóng tạo thành PdX_4^{2-} và X_2 .

Phức chất của Pt(IV) tương đương với phức chất của Pt(II) về số lượng cũng như về tính bền nhiệt động học.

Có rất nhiều phức chất thuộc các dạng $[PtCl]_6^{2^-}$. $[PtX_4L_2]$ và $[PtL_6]^{4^+}$, trong đó $X=F^-$, Cl^- , Br^- , I^- , CN^- , OH^- và $L=NH_3$, amin.

Ngoài những phức chất dạng $[PtX_4L_2]$ người ta còn biết những dãy phức chất hỗn hợp phối tử có thành phần biến đổi liên tục.

Ví du:

 $-D\bar{a}y:[Pt(NH_3)_6|Cl_4,[Pt(NH_3)_5Cl]Cl_3,[Pt(NH_3)_4Cl_2|Cl_2,[Pt(NH_3)_3Cl_3]Cl,[Pt(NH_3)_2Cl_4],\\$

 $[Pt(NH_3)Cl_5]$ và $K_2[PtCl_6]$.

 $-D\tilde{a}y;\;K_{2}[Pt(OH)_{6}],\;K_{2}[Pt(OH)_{5}Cl],\;K_{2}[Pt(OH)_{4}Cl_{2}],\;K_{2}[Pt(OH)_{5}Cl_{3}],\;K_{2}[Pt(OH)_{2}Cl_{4}],\;K_{3}[Pt(OH)Cl_{5}]\;v\tilde{a}\;K_{2}[PtCl_{6}]$

Hợp chất thông dụng nhất của Pt(IV), chất đầu để điều chể hợp chất khác của Pt, là hexahiđrat của axit cloroplatinic $H_2[PtCl_6].6H_2O$.

Axit eloroplatinie $(H_2[PtCl_6].6H_2O)$ là chất dạng tinh thể màu đỏ-nâu, chảy rữa trong không khí ẩm, tan trong nước cho dung dịch màu vàng, tan trong rượu và etc.

Axit cloroplatinic là axit mạnh. Muối cloroplatinat của natri và nhiều kim loại đều dễ tạn trong khi muối của K⁺, Rb⁺, Cs⁺ và NH₄⁺ lại khó tạn. Bởi vậy, người ta thường dùng axit cloroplatinic để kết tủa những cation đó.

Ví du:

$$H_2[PtCl_6] + 2KCl = K_2[PtCl_6] + 2HCl$$

Để tách platin ra khỏi các kim loại họ platin người ta lợi đụng tính ít tan của $(NH_4)_2[PtCl_6]$. Khi nung họp chất này ở 300°C, thu được platin ở dạng bọt.

$$(NH_a)_2[PtCl_6] = Pt + 2NH_4Cl + 2Cl_2$$

Khi tác dụng với dung dịch kiểm, ion Cl⁻ trong axit cloroplatinic được liền tiếp thay thế bằng ion OH^- và khi dư kiểm, phản ứng thay thế xảy ra hoàn toàn tạo thành muối $M_2|Pt(OH)_6|$ màu vàng nhạt (M= kim loại kiểm).

Ví du:

$$H_2[PtCl_6] + 8NaOH = Na_2[Pt(OH)_6] + 6NaCl + 2H_2O$$

Dung dịch của muối này, khi tác dụng với axit, tạo thành kết tủa màu vàng của axit hexahidroxoplatinic:

$$Na_2[Pt(OH)_6] + 2HCl = H_2[Pt(OH)_6] + 2NaCl$$

Hợp chất axit này vừa chứa proton vừa chứa ion hiđroxyl nhưng phản ứng trung hòa không xảy ra. Điều này cũng chứng tỏ tính trơ động học của các phức chất của platin.

Axit cloroplatinic có khả năng oxi hóa, nó tác dụng với các chất khử như SnCl₂, FeSO₄, CO, Zn, ... biến thành platin kim loại.

Axit cloroplatinic được diễu chế bằng cách hòa tan kim loại platin trong cường thủy hoặc bằng tác dụng của PtCl₄ với axit clohiđric.

Hợp chất của Pt(VI)

Trạng thái oxi hóa +6 là trạng thái rất kém bền của platin.

 $Platin\ trioxit\ (PtO_3)$. Khi điện phân dung dịch kiểm với điện cực đương làm bằng platin, thu được ở điện cực đó một chất bột màu đỏ-nâu có thành phần là $3PtO_3.H_2O$ rất kém bên, dễ phân hủy thành hiđroxit của Pt(IV) và oxi.

Platin hexaflorua (PtF₆) là chất dạng tinh thể màu đỏ thẫm, dễ nóng chảy, dễ bay hơi (nđnc, là 61°C và nđs, là 69°C) và là hợp chất kém bền nhất trong các hexaflorua của các nguyên tố dãy 5d:

$$WF_6 > ReF_6 > OsF_6 > IrF_6 > PtF_6$$

9.

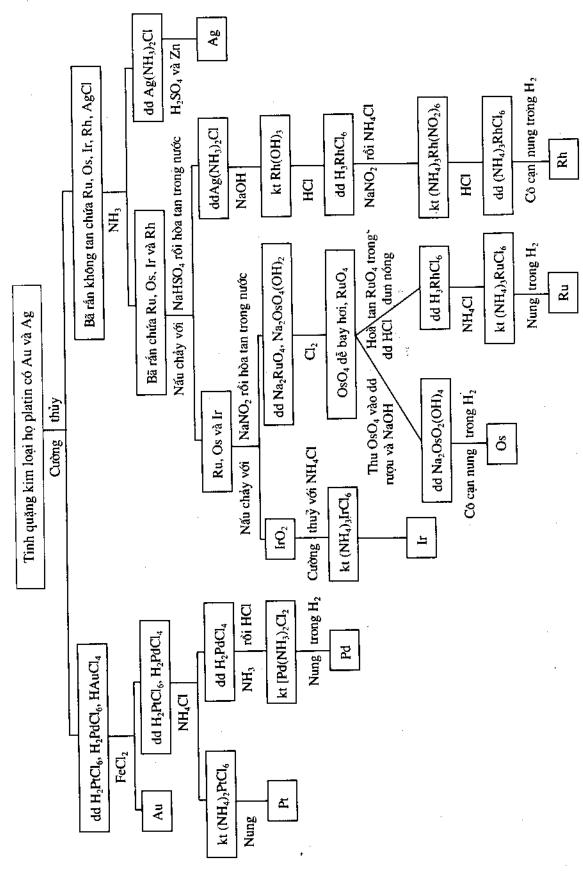
Việc nghiên cứu tính bện của PtCl₆ đã đưa đến những kết quả quan trọng đối với sự phát triển hóa học vô cơ. Năm 1960 nhà hóa học người Canada là Baclet bằng thực nghiệm đã chứng minh rằng PtF₆ có thể tách ra một nguyên tử F tạo thành PtF₅ rồi PtF₅ phân hủy thành PtF₆ và PtF₄:

$$PtF_6 = PtF_5 + F$$

$$2PtF_5 = PtF_6 + PtF_4$$

trong thí nghiệm ông phát hiện được thêm những vảy mỏng màu nâu bám trên thành của bình phản ứng có thành phần là O_2PtF_6 . Sự tạo thành hợp chất này chứng tỏ PtF_6 là chất oxi hóa rất mạnh, có khá năng lấy electron của phân tử O_2 :

$$PtF_6 + O_2 = O_2^*[PtF_6]^*$$


Phát hiện đó làm cho Baclet nghĩ đến khả năng dùng PtF_6 để oxi hóa khí hiếm Xe vì rằng năng lượng ion hóa thứ nhất của nguyên tử Xe (Xe \rightarrow Xe⁺) xấp xỉ với năng lượng ion hóa thứ nhất của phân tử O_2 ($O_2 \rightarrow O_2^+$) và năm 1962 ông đã tổng hợp được hợp chất Xe[PtF_6] ở nhiệt độ thường:

$$PtF_6 + Xe = Xe^{+}[PtF_6]^{-}$$

Phát minh này của Baclet đã mở đầu cho sự phát triển mạnh mẽ và nhanh chóng hóa học các khí hiếm.

Khả năng oxi hóa mạnh của PtF_6 hơn cả F_2 được giải thích là liên kết Pt-F trong PtF_6 kém bền hơn liên kết F-F trong F_2 . Bởi vậy, PtF_6 là một nguồn flo nguyên tử, là chất oxi hóa mạnh nhất. Thật vậy, nó flo hóa để dàng BrF_3 thành BrF_5 , phản ứng mãnh liệt với kim loại uran tạo thành UF_6 , phân hủy nước giải phóng khí oxi, tác dụng với thủy tinh ...

Platin hexaflorua được tạo nên khi ${\rm PtF_4}$ tác dụng với ${\rm F_2}$ hoặc khi đốt cháy muội ${\rm Pt}$ trong khí ${\rm F_2}$.

Hình 62. Một sơ đồ chế hoá tinh quặng của kim loại họ platin dd = dung dịch, kt = kết tủa

810 200

TÁCH RIÊNG TÙNG KIM LOAI HO PLATIN

Tách riêng từng kim loại họ platin là một công nghệ phức tạp của các chất vô cơ. Nguồn nguyên liệu dùng để khai thác các kim loại họ platin là platin tự sinh và bùn điện phân thu được trong sản xuất đồng và niken. Có nhiều phương pháp khác nhau chế hóa nguồn nguyên liệu đó để tách riêng từng kim loại. Tất cả đều bắt đầu bằng tác dụng của cường thủy.

Cường thủy hòa tan dễ dàng Pt và Pd tạo thành H_2PtCl_6 và H_2PdCl_4 , hòa tan một ít Ir và Rh tạo thành H_2IrCl_6 và H_3RhCl_6 , còn lại Os, Ru, một phần Ir và Rh không tan.

Dưới đây là một sơ đồ tổng quát chế hóa tinh quặng của platin tự sinh có chứa các kim loại họ platin, vàng, bạc và các tạp chất khác (Hình 62). Quy trình điều chế các kim loại $\dot{\sigma}$ phần cuối của sơ đồ đều là nung trực tiếp hay nung trong khí quyển H_2 những muối phức của kim loại họ platin.

Ví dụ:

$$Na_{2}[OsO_{2}(OH)_{4}] + 3H_{2} = Os + 2NaOH + 4H_{2}O$$

$$2(NH_{4})_{3}[RhCl_{6}] + 3H_{2} = 2Rh + 6NH_{4}Cl + 6HCl$$

$$[Pd(NH_{3})_{2}Cl_{2}] + H_{2} = Pd + 2NH_{4}Cl$$

Để tính chế các kim loại người ta cũng chuyển các kim loại thành những muối phức tương ứng và nung trực tiếp hay nung trong khí quyển hiđro.

CHƯƠNG IX

CÁC NGUYÊN TỐ NHÓM IB

Nhóm IB bao gồm các nguyên tố: đồng (Cu), bạc (Ag) và vàng (Au). Đười đây là một số đặc điểm của nguyên tố (Bảng 22).

Bảng 22
Đặc điểm của nguyên tố nhóm IB

Nguyên tố (E)	Số thứ tự nguyên	Cấu hình electron hóa trị	Năng lượng ion hóa, eV			Bán kính nguyên tử ,	Thế điện cực,
tử	tử		I,	I ₂	I ₃	Å	· V
Cu	29	3d104s1	7,72	20,29	36,9	1,28	+ 0,337 (Cu ²⁺ /Cu)
Ag	47	4d ¹⁰ 5s ¹	7,57	21,50	34,82	1,44	+ 0,799 (Ag*/Ag)
Au	79	5d ¹⁰ 6s ¹	9,22	20,50	30,5	1,44	+ 1,498 (Au ³⁺ /Au)

Nguyên tử của các nguyên tố nhóm IB có cấu hình electron giống nhau: một electron s ở lớp ngoài cùng và 18 electron $(s^2p^6d^{10})$ ở lớp thứ hai kể từ ngoài. Như vậy những obitan 3d của Cu, 4d của Ag và 5d của Au đã được sớm bão hòa electron bằng cách chuyển tới những obitan d đó một trong hai electron của obitan ns đã được bão hòa từ nguyên tử các kim loại kiềm thổ (ns^2) . Điều đó chứng tỏ cấu hình electron $(n-1)d^{10}ns^1$ về mặt năng lượng là thuận lợi hơn cấu hình electron $(n-1)d^9ns^2$. Sự chuyển electron như vậy đã gặp trong các nguyên tố Cr và Mo, trong đó các obitan d sớm được bão hòa một nửa số electron (d^5) vì cấu hình $(n-1)d^4ns^2$ về mặt năng lượng là kém thuận lợi hơn so với cấu hình $(n-1)d^5ns^1$.

Đặc điểm về cấu tạo nguyên tử các nguyên tố nhóm IB quyết định những tính chất lí hóa học khác biệt của chúng, trước hết là tính trơ về mặt hóa học của kim loại. Thật vậy vỏ 18

electron chắn electron s với hạt nhân kém hiệu quả hơn so với vỏ 8 electron bền của khí hiếm, làm tăng mạnh năng lượng ion hóa thứ nhất của nguyên tử các nguyên tố nhóm IB so với các nguyên tố nhóm IA:

I, eV	Cu 7,72	A g 7,57	Au 9,22
	Κ .	Rb	Cs
I_1, eV	4,32	4,16	3,58

Bởi vậy, trong khi kim loại kiềm rất hoạt động về mặt hóa học, đồng, bạc và vàng là những kim loại rất kém hoạt động. Kim loại kiểm tạo nên hợp chất ion còn đồng, bạc, vàng tạo nên hợp chất bao gồm chủ yếu liên kết cộng hóa trị. Các phân tử Cu_2 , Ag_2 và Au_2 có độ bền (năng lượng liên kết là 174,3; 157,5 và 210 kJ/mol tương ứng) lớn hơn các phân tử K_2 , Rb_2 và Cs_2 (năng lượng liên kết ~ 40 kJ/mol) là do sự tạo thêm liên kết π giữa những cặp electron d và obitan p trống của Cu, Ag và Au.

Sự giảm năng lượng ion hóa thứ nhất từ Cu đến Ag có liên quan đến sự tăng bán kính nguyên tử từ 1,28Å đến 1,44Å và sự tăng năng lượng ion hóa thứ nhất từ Ag đến Au liên quan đến sự tăng mạnh điện tích hạt nhân nguyên tử trong khi bán kính nguyên tử không biến đổi (1,44Å).

Năng lượng ion hóa thứ hai của Cu, Ag và Au gần bằng nhau và rất bế hơn so với kim loại kiểm. Bởi vậy, trong khi kim loại kiểm trong hợp chất chỉ có số oxi hóa duy nhất là +1, các nguyên tố nhóm đồng, ngoài trạng thái oxi hóa +1 còn có những trạng thái oxi hóa +2, +3,... nghĩa là electron hóa trị của chúng không phải chỉ là electron s mà cả những electron d nữa. Điều này được giải thích bằng sự gần nhau về năng lượng của các obitan (n-1)d và ns. Tuy nhiên mức độ bền của các trạng thái oxi hóa +1, +2 và +3 không biến đổi một cách tuần tự trong nhóm Cu-Ag-Au. Trạng thái oxi hóa +1 đặc biệt bền hơn đối với Ag và một phần đối với Cu, điều này phù hợp với năng lượng ion hóa thứ nhất của Ag bé hơn Cu, rất bé hơn Au và liên quan đến độ bền tương đối của cấu hình electron 4d¹0, một cấu hình đã được hình thành ở Pd là nguyên tố đứng trước Ag ở trong chu kì. Trạng thái oxi hóa +2 đặc trưng hơn đối với Cu, điều này cũng phù hợp với tổng năng lượng ion hóa thứ nhất và thứ hai của Cu là bé nhất so với Ag và Au. Trạng thái oxi hóa +3 đặc trưng hơn đối với Au, điều này cũng phù hợp với tổng năng lượng ion hóa thứ nhất so với các nguyên tố trong nhóm.

Sơ đồ thế oxi hóa - khủ:

$$[Ag(S_{2}O_{3})_{2}]^{3-} \xrightarrow{+0,017}$$

$$Ag^{3+} \xrightarrow{+2,1} Ag^{2+} \xrightarrow{+1.980} Ag^{+} \xrightarrow{+0,7991} Ag$$

$$AgX \xrightarrow{+0,643} CH_{3}COO \xrightarrow{+0,2222} Cl^{-} \xrightarrow{+0,0713} Br^{-}$$

$$1,498$$

$$Au^{3+} \xrightarrow{<-1.29} Au^{2+} \xrightarrow{+1.29} Au^{+} \xrightarrow{+1.691} Au$$

$$[AuCl_{4}]^{-} \xrightarrow{+0,87} [AuBr_{2}]^{-} \xrightarrow{+0,956}$$

cho thấy trạng thái kim loại là bền nhất đối với Cu, Ag và Au: tất cả những trạng thái oxi hóa dương đều không bền về mặt nhiệt động, dễ chuyển về trạng thái oxi hóa số không. Ở trong dung dịch, độ bền của các trạng thái oxi hóa +1, +2 và +3 của Cu, Ag và Au cũng không giống nhau. Sơ đồ thế oxi hóa - khứ còn cho thấy sự tạo phức và sự kết tủa hợp chất ít tan làm tăng độ bền của những trạng thái oxi hóa dương kém bền của nguyên tố nhóm IB. Ví dụ như quá trình chuyển Au³⁺ thành Au khi không có ion Cl⁻ ở trong dung dịch có thế oxi hóa - khử chuẩn là 1,5V nhưng khi có ion Cl⁻ là 1V, quá trình tạo phức của Ag⁺ với anion thiosunfat làm giảm thế oxi hóa-khử chuẩn từ 0,8V đến 0,02V...

Khả năng dễ tạo nên nhiều phức chất là một tính chất rất đặc trưng của ion kim loại nhóm IB. Những hợp chất Cu, Ag và Au với số oxi hóa cao đều có màu vì trong đó các cation có obitan d không điền đủ electron. Những hợp chất của đồng, bạc và vàng đều dộc, nhất là đồng.

CÁC ĐƠN CHẤT

Tính chất lí học

Các kim loại nhóm IB kết tinh ở dạng tinh thể lập phương tâm diện. Chúng là những kim loại nặng, mềm, có ánh kim, đồng có màu đỏ, bạc màu trắng và vàng màu vàng chói. Màu

9100 400

vàng là màu không bình thường đối với kim loại, bản thân nó nói lên cấu tạo đặc biệt của hệ electron trong kim loại. Trong thiên nhiên, đồng có hai đồng vị bền là ⁶³Cu (70,13%) và ⁶⁵Cu (29,87%), bạc có hai đồng vị bền là ¹⁰⁷Ag (51,9%) và ¹⁰⁹Ag (48,1%) còn vàng chỉ có một đồng vị bền là ¹⁰⁷Au (100%). Dưới đây là một số hằng số vật lí của các kim loại nhóm IB (Bảng 23).

Bảng 23 Hằng số vật lí của kim loại nhóm IB

Kim loại (E)	Nđnc., °C	Nđs., °C	Nhiệt thăng hoa, kJ/mol	Tỉ khối	Độ cứng (thang Moxơ)		Độ dẫn nhiệt (Hg=1)
Cu	1083	2543	339,6	8,94	3,0	57	36
Ag	960,5	2167	283,6	10,50	2.7	59	49
Au	1063,4	2880	366,6	19,32	2,5	40	35

So với kim loại kiềm, các kim loại nhóm IB có nhiệt độ nóng chảy, nhiệt độ sôi và nhiệt thăng hoa cao hơn nhiều là vì tham gia trong liên kết kim loại không chỉ có những electron s như trong kim loại kiềm mà còn có cả những electron d nữa.

Về độ dẫn điện và dẫn nhiệt, cả ba kim loại vượt tất cả các kim loại khác: bạc đứng đầu, đồng đứng thứ hai, vàng đứng thứ ba, sau đó là nhôm, magie... Đồng, bạc và vàng cũng vượt xa tất cả các kim loại khác về tính đẻo dai: dễ dát mỏng và dễ kéo sợi, nhất là vàng. Một gam vàng có thể kéo thành sợi dài 3 km, lá vàng có thể dát mỏng tới 0,0001 mm, nghĩa là mảnh hơn sợi tóc của người 500 lần. Lá vàng mỏng như vậy có màu vàng trong ánh sáng phản chiếu và có màu lục trong ánh sáng xuyên qua.

Tính dẻo dai có một không hai của vàng kim loại cũng là kết quả của cấu tạo electron đặc biệt của vàng. Có lẽ trong kim loại tổn tại đồng thời cả hai cấu hình electron của nguyên tử: $5d^{10}6s^1$ và $5d^96s^2$, chúng có năng lượng rất gần nhau, electron có thể nhảy dễ dàng từ obitan này sang obitan khác làm cho hệ electron trong kim loại trở nên linh động. Đây là nguyên nhân của "sự bôi trơn tốt electron" gây ra tính dẻo dai đặc biệt của vàng.

Cả ba kim loại để tạo nên hợp kim với nhau và với các kim loại khác, dễ tạo nên hỗn hống với thủy ngân. Những hợp kim quan trọng của đồng là:

Bronzơ hay còn gọi là đồng thiếc chứa 10% Sn có lẽ đã được điều chế ra một cách ngẫu nhiên trong khi luyện đồng và đã được biết từ thời cổ xưa. Bronzơ cứng và dễ nóng chảy hơn đồng nên đã thay thế đồng, chấm dứt thời đại đồ đồng và đặt nền móng cho thời đại đồ đồng thiếc kéo dài hơn hai ngàn năm trong lịch sử tiến hoá của nhân loại. Từ xa xưa bronzở đã được dùng rộng rãi để đúc trống, chuông, súng đại bác, tượng... Ngày nay bronzơ thiếc được thay thế dần bằng các bronzơ khác. Ví dụ bronzơ nhôm chứa 10% Al rất bền, được dùng để chế tạo những chi tiết của động cơ máy bay; bronzơ chì được dùng để chế ổ trục của đầu máy hơi

nước, động cơ máy bay, động cơ tàu thủy và tuốc bin thủy lực; *bronzơ berili* chứa 2% Be bền đặc biệt và có tính đàn hồi cao, được dùng để chế lò xo cao cấp.

Đồng thau chứa 18-40% Zn, rẻ tiền hơn bronzơ, dễ chế hóa cơ học và bển hơn với hóa chất, được dùng để làm ống tản nhiệt, chi tiết máy, nồi hấp, vòi nước, vòi khí, tay nắm cửa ra vào, bản lề... Đồng thau chứa thêm Al có dạng bề ngoài giống vàng, được dùng làm huy hiệu và biểu tượng.

Menchio chứa 29-33% Ni, bền với nước biển, với hơi quá nhiệt và với những tác nhân ăn mòn khác, được dùng trong ngành chế tạo tàu thủy, dùng để làm những dụng cụ cơ khí chính xác và đồ dùng gia đình, thìa, dĩa...

Nâyzinhe chứa 13,5-16,5% Ni và 18-22% Zn có màu trắng bạc đẹp và bền với các dung dịch muối và axit hữu cơ, được dùng để làm những dụng cụ y tế, đồ mĩ nghệ.

Constantan, manganin, nikelin đều là hợp kim của đồng. Hợp kim dùng để đúc tiền là hợp kim của đồng với Al hoặc Ni hoặc Ag.

Đồng có một lượng bé trong thực vật và động vật. Trong cơ thể con người, đồng có trong thành phần của một số protein, enzim và tập trung chủ yếu ở gan. Hợp chất của đồng là cần thiết đối với quá trình tổng hợp hemoglobin và photpholipit. Sự thiếu đồng gây nên bệnh thiếu máu. Trong máu của động vật bậc thấp (ốc, sò và động vật thân mềm) có chất màu là hemoxianin, chứa đồng và có chức năng như hemoglobin ở trong máu của động vật có xương sống. Hợp chất của đồng không độc bằng hợp chất của kim loại nặng như chì và thủy ngân. muối đồng rất độc đối với nấm mốc và rêu tảo. Người ta dùng CuSO₄ để chống mốc cho gỗ, dùng nước Boocđô là hỗn hợp của dung dịch CuSO₄ và sữa vôi để trừ bọ cho một số cây.

Tính chất hóa học

Về mặt hóa học, đồng, bạc và vàng là những kim loại rất kém hoạt động.

Với oxi không khí, chỉ đồng tác dụng còn bạc và vàng không tác dụng kể cả khi đun nóng nên bạc và vàng là kim loại quý diễn hình.

Ở nhiệt độ thường và trong không khí, đồng bị bao phủ một màng màu đỏ gồm đồng kim loại và đồng(I) oxit. Oxit này đã được tạo nên bởi những phản ứng:

$$2Cu + O_2 + 2H_2O = 2Cu(OH)_2$$

 $Cu(OH)_2 + Cu = Cu_2O + H_2O$

Nếu trong không khí có mặt khí CO_2 , đồng bị bao phủ dẫn một lớp màu lục gồm cacbonat bazơ $Cu(OH)_2CO_3$ (ri đồng này thường gọi là tanh đồng). Khi đun nóng trong không khí ở nhiệt độ 130° C, đồng tạo nên ở trên bề mặt một màng Cu_2O , ở 200° C tạo nên lớp gồm hỗn hợp oxit Cu_2O và CuO và ở nhiệt độ nóng đỏ đồng cháy tạo nên CuO và cho ngọn lửa màu lục.

Đối với oxi không khí, bạc trơ hơn đồng, nhưng nếu trong không khí có một ít khí H_2S thì màu trắng của bạc dẫn dần trở nên xám xịt vì đã tạo nên màng Ag_2S theo phản ứng:

$$2Ag + H_2S = Ag_2S + H_2$$

Ở trong dãy điện thế, tuy bạc đứng sau hiđro nhưng phản ứng này có thể xảy ra là vì việc tạo thành bạc(I) sunfua màu đen rất ít tan (tích số tan $\sim 10^{-51}$) đã làm biến đổi thế điện cực của bạc từ giá trị dương thành âm.

 \mathring{O} nhiệt độ thường, đồng không tác dụng với flo bởi vì màng CuF_2 được tạo nên rất bền sẽ bảo vệ đồng. Với clo, cả ba kim loại tác dụng khi đun nóng tạo nên các muối CuCl_2 , AgCl và AuCl_3 tương ứng.

Khi đun nóng, đồng và bạc tác dụng với S, C và cả ba kim loại tác dung với P, As...

Đồng, bạc và vàng không tác dụng với các dung dịch axit. Riêng đồng và bạc tác dụng với dung dịch HI giải phóng H_2 nhờ tạo thành CuI và AgI là chất ít tan. Cả ba kim loại có thể tác dụng với dung dịch HCN đặm đặc giải phóng H_2 nhờ tạo thành những anion phức bên $[E(CN)_2]$.

Ví du:

$$2Cu + 4HCN = 2H[Cu(CN)_2] + H_2$$

Đồng và bạc tan trong axit nitric và axit sunfuric đặc.

Ví dụ:

$$3Ag + 4HNO_3 = 3AgNO_3 + NO + 2H_2O$$
(loãng)
$$2Ag + 2H_2SO_4 = Ag_2SO_4 + SO_2 + 2H_2O$$
(đặc)

trong khi vàng chỉ có thể tan trong cường thủy hoặc trong dung địch HCl khi có mặt khí clo:

$$Au + HNO_3 + 4HCl = H[AuCl_4] + 2H_2O +NO$$

 $2Au + 3Cl_2 + 2HCl = 2H[AuCl_4]$

Như vậy, ở đây HNO_3 và Cl_2 làm chức năng của chất oxi hoá còn Cl^- làm chức năng của phối tử tạo phức.

Khi có mặt oxi không khí, đồng có thể tan trong dung dịch HCl và dung dịch NH₃ đặc, đồng, bạc và vàng có thể tan trong dung dịch xianua kim loại kiểm:

$$2Cu + 4HCl + O_2 = 2CuCl_2 + 2H_2O$$

 $2Cu + 8NH_3 + O_2 + 2H_2O = 2[Cu(NH_3)_4](OH)_2$
 $4E + 8KCN + 2H_2O + O_2 = 4K[E(CN)_2] + 4KOH$

Trang thái thiên nhiên và phương pháp điều chế

Trong thiên nhiên, đồng là nguyên tố tương đối phổ biến còn bạc và vàng kém phổ biến hơn nhiều, đặc biệt vàng là nguyên tố rất phân tán. Trữ lượng ở trong vỏ Trái Đất của đồng, bạc và vàng là 0.003%, $2.10^{-6}\%$ và $5.10^{-8}\%$ tổng số nguyên tử (tương ứng). Cả ba nguyên tố đều có thể tồn tại ở dạng tự do, những hạt kim loại tự do đó được gọi là kim loại tự sinh. Những hạt kim loại tự sinh thường rất bé, đôi khi gặp hạt có khối lượng rất lớn. Ví dụ hai hạt vàng tự sinh lớn nhất tìm thấy ở Australia nặng 111,6 kg và 81,5 kg. Bạc tự sinh tuy rất hiểm hơn vàng và đồng nhưng cũng có hạt nặng đến 13,5 tấn. Ở Mỹ năm 1857 người ta tìm thấy ở trong vùng Hồ Lớn một khối đồng tự sinh nặng đến 420 tấn, trên đó có những vết đục đẽo ngày xưa bằng búa rìu đá. Từ thời cổ xưa, loài người đã tiếp xúc với cả ba kim loại này. Có lẽ vì vàng tồn tại chủ yếu ở dạng tự do và ở phân tán nên đã được biết trước tiên. Sau vàng là đồng, những công cụ lao động bằng đồng đã được gia công bằng những công cụ lao động bằng đá và thời đại đồ đá trong lịch sử phát triển của nhân loại đã được thay thế bằng thời đại đồ đồng cách đây khoảng 6000 năm. Bạc được biết sau đồng, người ta đã biết dùng vàng và bạc làm tiền tệ cách đây khoảng 4500 năm.

Tên La Tinh cuprum của nguyên tố đồng có lễ xuất phát từ chữ Cuprus là tên Latinh của hòn đảo Kipr, nơi ngày xưa người Cổ La Mã đã khai thác quặng đồng và chế tác đồ đồng. Tên Latinh argentum của nguyên tố bạc xuất phát từ chữ Phạn arganta nghĩa là trắng, màu đặc trưng của bạc. Tên La Tinh aurum của nguyên tố vàng xuất phát từ chữ aurora là buổi bình minh, điều đó phù hợp với việc các nhà giả kim thuật dùng kí hiệu mặt trời chỉ nguyên tố vàng.

Những khoáng vật chính của đồng là: cancosin (Cu₂S) chứa 79,8% Cu, cuprit (Cu₂O) chứa 88,8% Cu, covelin (CuS) chứa 66,5% Cu, cancopirit (CuFeS₂) chứa 34,57% Cu và malachit (CuCO₃.Cu(OH)₂), của bạc là acgentit (Ag₂S) chứa 87,1% Ag, thường ở lẫn trong các quặng đa kim chứa Cu, Pb và Zn. Ngoài dạng tự do, vàng còn ở dạng hợp chất (tuy rất hiếm hơn), ví dụ như vàng telurua (AuTe₂). Những hạt vàng tự do thường nằm xen trong đá thạch anh, đó là quặng vàng gốc. Đá thạch anh đó bị phong hóa lâu đời tạo nên cát có vàng, vàng này được gọi là vàng sa khoáng. Ngoài ra vàng tự do còn ở lẫn trong quặng đồng và các quặng đa kim khác.

Trên thế giới, những nước chủ yếu sản xuất đồng là Chi Lê, Mỹ, Nga, Australia và Trung Quốc; sản xuất bạc là Mêxico, Mỹ, Pêru, Australia, Canađa và sản xuất vàng là Nam Phi, Mỹ, Australia, Trung Quốc và Nga.

Nước ta có các mỏ đồng lớn ở Bản Phúc (Sơn La) và Sinh Quyền (Lao Cai) có thành phần khoáng vật chủ yếu là cancopirit, manhetit, pirotin ... Bạc có trong các mỏ đa kim ở Ngân Sơn và Chợ Điền (Bắc Cạn), Tú Lệ (Yên Bái) và mỏ đồng Sinh Quyền. Hai mỏ vàng đã được khai thác nhiều năm là mỏ Pặc Lạng (Bắc Cạn) và mỏ Bồng Miêu (Quảng Nam). Rải rác ở nhiều tinh miền Bắc và miền Trung có những điểm quặng của vàng gốc và vàng sa khoáng.

Đồng là kim loại màu quan trọng nhất đối với công nghiệp và kĩ thuật. Hơn 50% lượng đồng khai thác hàng năm được dùng để làm dây dẫn điện, loại đồng này phải có độ tinh khiết

0.0

cao, trên 30% được dùng để chế hợp kim. Dẫn nhiệt tốt và chịu ăn mòn, đồng kim loại được dùng để chế các thiết bị trao đổi nhiệt, sinh hàn và chân không, chế nồi hơi, ống dẫn dầu và dẫn nhiên liệu. Bạc dẫn điện tốt nhất và bền hóa học được dùng để làm những máy trong công nghiệp hóa chất (chế axit axetic bằng, phonol v.v...) và trong công nghiệp thực phẩm (sản xuất nước hoa quả và những nước giải khát khác), làm những dụng cụ phòng thí nghiệm. Lượng lớn bạc được dùng để mạ những linh kiện vô tuyến, dây dẫn trong kĩ thuật vô tuyến cao tần, thủy tinh và gốm trong máy điện tử. Do phản xạ tốt bức xạ, bạc được dùng để tráng gương, phích nước, pha của đèn chiếu và kính thiên văn. Bạc và đồng kim loại còn được dùng làm chất xúc tác cho một số phản ứng tổng hợp chất trong công nghiệp hoá học. Với những tính chất cơ lí hóa quý giá và màu sắc đẹp mà không kim loại nào sánh nổi, từ xa xưa vàng đã được dùng làm đồ trang sức, đồ dùng trong các cung điện như cốc, chén, ấm, bình, lọ và đùng để thiếp lên gỗ, thủy tinh và đồ sứ. Mái vòm của một số cung điện và đền đài cũng được mạ vàng. Ngày nay một lượng đáng kể vàng được dùng trong các ngành kĩ thuật hiện đại như vô tuyến, điện tử, thông tin, máy tính và hàng không. Do phản chiếu tốt những bức xạ hồng ngoại, vàng được dùng để mạ những bộ phận phản chiếu trong máy hồng ngoại, mạ vỏ của vệ tinh nhân tạo và của tàu du hành vũ trụ. Hiện nay vàng vẫn là vật liệu bảo đảm tiền tệ của tất cả các nước trên thế giới. Hợp kim của vàng và của bạc còn được dùng để đúc tiền và bọc răng.

Từ xa xưa người ta dùng quặng giàu để luyện đồng, mãi đến thế kỉ XIX còn được dùng những quặng chứa 15% Cu hay hơn nữa. Ngày nay đồng được luyện từ quặng nghèo chỉ chứa từ 1 đến 2% Cu. Bởi vậy công nghệ luyện đồng là khá phức tạp và bao gồm nhiều giai đoạn:

- Tuyển quặng: trước tiên quặng đồng, ví dụ cancopirit chẳng hạn, được nghiền nhỏ và làm giàu bằng phương pháp tuyển trọng lực rồi bằng phương pháp tuyển nổi. Tinh quặng thu được sau khi đã làm giàu thường chứa đến 12% Cu.
- Đốt tinh quặng ở 800-850°C trong lò nhiều tầng giống như lò đốt pirit của dây chuyền sản xuất axit sunfuric. Sau khi đốt, lượng S trong quặng được giảm bốt nhờ những phản ứng:

$$2\text{CuFeS}_2 + \text{O}_2 = \text{Cu}_2\text{S} + 2\text{FeS} + \text{SO}_2$$

 $2\text{FeS}_2 + 5\text{O}_2 = 2\text{FeO} + 4\text{SO}_2$
 $2\text{FeS} + 3\text{O}_2 = 2\text{FeO} + 2\text{SO}_2$

Hai phản ứng đầu xảy ra hoàn toàn, phản ứng thứ ba xảy ra một phần. Sản phẩm thu được ở lò đốt này có thành phần ứng với hỗn hợp $\mathrm{Cu_2S}$, FeS và FeO.

- Nấu chảy ở 1200-1500°C sản phẩm trên trong lò phản xạ, có cho thêm cát để tạo xỉ với FeO:

$$FeO + SiO_2 = FeSiO_3 (xi)$$

Xỉ sắt silicat tương đối nhẹ hơn nên nổi lên trên và liên tục chảy ra khỏi lò còn sản phẩm nóng chảy có thành phần ứng với hỗn hợp Cu₂S và FeS, nặng hơn nằm dưới lớp xỉ, được tháo ra khỏi lò theo chu kì. Sản phẩm đó được gọi là *stein*.

- Chuyển stein nóng chảy vào lò thổi kiểu lò Besme, cho thêm cát và thổi khí oxi vào lò; nhiệt độ của lò được giữ ở 1300°C. Ở đây xảy ra những phản ứng:

$$2\text{FeS} + 3\text{O}_2 = 2\text{FeO} + 2\text{SO}_2$$

 $\text{FeO} + \text{SiO}_2 = \text{FeSiO}_3 (xi)$
 $2\text{Cu}_2\text{S} + 3\text{O}_2 = 2\text{Cu}_2\text{O} + 2\text{SO}_2$

Hai phản ứng đầu xảy ra hoàn toàn, phản ứng thứ ba xảy ra một phần.

- Giai đoạn tiếp theo cũng được thực hiện ở trong lò thổi nhưng không được thổi khí oxi vào lò. Kết quả là đồng(I) trong Cu_2O và Cu_2S bị lưu huỳnh ở dạng sunfua khử thành đồng kim loại:

$$2Cu_2O + Cu_2S = 6Cu + SO_2$$

Đồng thô thu được chứa 90-95% Cu và các tạp chất.

- Tinh chế đồng thô trước tiên bằng phương pháp đốt: chuyển đồng thô lỏng trở lại lò phản xạ và thổi không khí để oxi hóa tạp chất:

$$4Sb + 3O_2 = 2Sb_2O_3$$

 $2Pb + O_2 = 2PbO$
 $2Zn + O_2 = 2ZnO$

một phần đồng cũng bị oxi hóa:

$$4Cu + O_2 = 2Cu_2O$$

Cho thêm cát vào lò để chuyển tạp chất thành xỉ. Để chuyển Cu_2O trở lại thành Cu_3 người ta trộn đồng thô lỏng với than gỗ:

$$Cu_2O + C = 2Cu + CO$$

Đồng đỏ thu được chứa 95-98% Cu. Để có đồng tinh khiết cần phải tinh chế theo phương pháp điện phân. Người ta điện phân dung dịch CuSO₄ (có cho thêm H₂SO₄) với cực âm là những lá đồng tinh khiết và cực dương là những thỏi đồng đỏ. Kết quả là dương cực tan ra và những tạp chất kim loại đứng trước Cư ở trong dãy điện thế có trong đồng đỏ đi vào dung dịch dưới dạng muối sunfat còn những tạp chất là kim loại đứng sau Cu lắng xuống đáy bình điện phân dưới dạng bùn. Bùn âm cực đó chứa Ag, Au, Pt, đồng selenua và đồng telerua. Giá của những kim loại quý trong bùn đó hoàn toàn đủ bù trừ cho chí phí của quá trình điện phân. Ở cực âm thu được đồng tinh khiết chứa đến 99,99% Cu. Loại đồng điện phân đó được dùng làm dây dẫn.

Một lượng nhỏ đồng được điều chế từ quặng nghèo theo phương pháp thủy luyện: chế hóa quặng với những dung dịch khác nhau để được muối đồng. Ví dụ người ta chế hóa quặng chứa $\mathrm{Cu}_2\mathrm{S}$ bằng dung dịch $\mathrm{Fe}_2(\mathrm{SO}_4)_3$:

$$Cu_2S + 2Fe_2(SO_4)_3 = 4FeSO_4 + 2CuSO_4 + S$$

hoặc chế hóa quặng chứa cacbonat hay oxit đồng bằng dung dịch $\rm H_2SO_4$ loãng. Sau đó dùng bột sắt để kết tủa đồng kim loại từ dung dịch muối đồng.

Nguồn chủ yếu để điều chế bạc là những kim loại thô như đồng, chì và kẽm đã được luyện từ quặng sunfua có chứa Ag₂S. Ví dụ để tách bạc từ chì thô có chứa bạc, người ta cho thêm kẽm vào chì nóng chảy, kẽm kết hợp với bạc (và vàng nếu có) tạo nên những hợp chất giữa-kim loại như Ag₂Zn₃, Ag₂Zn₅ (và Au₃Zn₃, AuZn₅). Những hợp chất này bền, không tan trong chì nóng chảy. Vớt váng bạc đó ra, đun nóng để hơi kẽm (nđnc. của kẽm là 906°C) thoát ra ngoài và oxi hóa tạp chất chì kéo theo. Bạc thô sẽ được tinh chế bằng phương pháp điện phân.

Khoảng 20% lượng bạc được luyện trực tiếp từ quặng nghèo chứa Ag_2S bằng phương pháp xianua. Nghiền khô rồi nghiền ướt quặng với dung dịch NaCN để được bùn nhão. Cho bùn nhão chảy vào bể lớn, dùng không khí nén sục vào bể để khuấy đảo bùn trong vài ba ngày. Khoáng vật bac sunfua tan vào dung dịch nhờ phán ứng:

$$Ag_2S + 4NaCN$$
 \Longrightarrow $2Na[Ag(CN)_2] + Na_2S$

Natri sunfua tác dụng với NaCN khi có mặt không khí làm cho cân bằng trên chuyển dịch và Ag₃S tan nhiều hơn:

$$2NaCN + 2Na_2S + 2H_2O + O_3 = 2NaSCN + 4NaOH$$

Sau cùng dùng kẽm bụi để kết tủa bạc:

$$2Na[Ag(CN)_{2}] + Zn = Na_{2}[Zn(CN)_{4}] + 2Ag$$

Hòa tan kẽm dư trong axit sunfuric để thu bạc.

Vàng được tách ra chủ yếu từ vàng tự do ở trong quặng gốc hoặc sa khoáng. Người ta tách vàng ra khỏi quặng (đã nghiên) theo một hoặc kết hợp hai hay ba phương pháp chính sau đây:

- Tuyển trọng lực: dựa vào tỉ khối của đất, đá và cát bé hơn so với vàng, người ta dùng dòng nước rửa trôi chúng ở trên các máng đãi đặt dốc để tách vàng. Tiếp tục đãi nhiều lần như vậy bằng nước có thể thu được vàng thô.
- Hỗn hống hóa: cho quặng hay tinh quặng thu được sau khi đã đãi bằng nước đi qua những máng đặt đốc và rung, đáy máng có những lá đồng trên mặt được bôi thủy ngân, vàng tan vào thủy ngân tạo thành hỗn hống vàng và nằm lại trên máng. Đun nóng hỗn hống vàng trong thiết bị riêng để chưng cất thủy ngân và thu vàng. Phương pháp này cho phép tách được những hạt vàng có kích thước tương đối lớn hơn ở trong quặng.
- Xianua hóa: chế hóa quặng hay tinh quặng với dung dịch NaCN (hay KCN) và liên tục sục không khí nén vào dung dịch trong ít ngày, vàng tan dần theo phản ứng:

$$4Au + 8NaCN + 2H_2O + O_2 = 4Na[Au(CN)_2] + 4NaOH$$

Sau đó dùng bụi kẽm dể kết tủa vàng:

$$2Na[Au(CN)_2] + Zn = Na_2[Zn(CN)_4] + 2Au$$

hoặc tách vàng bằng phương pháp trao đổi ion.

Phương pháp xianua được dùng rộng rãi hơn hai phương pháp kia.

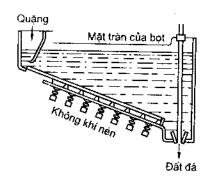
Hàng năm thế giới sản xuất hơn một ngàn tấn vàng, hàng chục ngàn tấn bạc và hàng triệu tấn đồng.

Để đánh giá hàm lượng Au trong vàng người ta dùng đơn vị *cara*, một cara được xác định bằng 1/24 khối lượng toàn phần của vàng. Như vậy vàng 24 cara là vàng tinh khiết chứa 100% Au, vàng 18 cara là vàng chứa 75% Au... Chú ý rằng một đơn vị khối lượng của kim cương cũng được gọi là *cara*, một cara đó bằng 0,2g.

Tuyển khoáng

Trong thiên nhiên rất hiểm có quặng kim loại chỉ chứa một khoáng vật. Những khoáng vật có ích luôn sinh ra trên nền đất đá được gọi là đất đá không quặng. Bởi vậy, trước khi luyện kim loại từ quặng, cần phải nâng cao hàm lượng của kim loại ở trong quặng, nghĩa là làm giàu khoáng vật chứa kim loại đó. Việc làm giàu khoáng vật ở trong quặng được gọi là tuyển khoáng và quặng đã được làm giàu được gọi là tinh quăng.

Những quặng sắt chứa từ 60÷70% manhetit có thể dùng trực tiếp cho lò cao nhưng những quặng đồng chứa từ 1÷2% Cu luôn luôn cần phải tuyển thành tinh quặng chứa 20÷25% Cu. Đối với quặng của kim loại, những phương pháp tuyển khoáng thường dùng là phương pháp tuyển quặng bằng tay, phương pháp tuyển trọng lực dựa vào khối lượng riêng khác nhau của các khoáng vật và đất đá không quặng (ở đây gọi chung là vật liệu) ví dụ như dùng nước đãi vàng sa khoáng trong cát có chứa vàng, phương pháp tuyển từ dựa vào từ tính khác nhau của các vật liệu ví dụ như dùng từ trường để tách khoáng vật của sắt và vonfram ra khỏi quặng caxiterit sa khoáng và phương pháp tuyển nổi dựa vào khả năng tẩm ướt nước khác nhau của các vật liệu. Những phương pháp tuyển đã được trình bày trước ở đây thường là phương pháp tuyển sơ bộ trước khi tuyển nổi.


Phương pháp tuyển nổi. Để làm ví dụ chúng ta xét sự tuyển nổi quặng đồng dạng sunfua. Quặng được nghiên, phân cấp hạt, rửa bằng nước để loại một phần bớt đất đá rồi sấy khô.

Đổ quặng đó vào thùng tuyển nổi (Hình 63) khuấy trộn quặng với nước có chứa một lượng nhỏ chất tạo bọt như đầu thông, creozol và chất có cực yếu khác, thổi không khí vào nước từ đáy thùng. Những hạt khoáng vật sunfua đồng bám dính vào bề mặt bọt không khí cùng với chất tạo bọt nổi lên trên mặt nước tạo thành lớp bọt chảy tràn qua mặt thùng. Đất đá nằm lại ở đáy thùng và được tháo ra ngoài.

Chất tạo họt là những hợp chất hữu cơ lưỡng cực như rượu, amin, axeton và anđehit.

Chúng được hấp phụ lên bề mặt phân chia giữa nước và không khí làm giảm sức căng bề mặt của nước (Xem tr.97, Tập Một và tr.23, Tập Hai). Phần có cực của phân tử hợp chất hướng nhóm ưa nước tới nước, còn phần không cực (gốc hữu cơ -R) là phân kị nước được hướng tới bọt khí và như vậy bọt khí được làm bền.

Để tăng khả năng bám đính của hạt khoáng vật vào bọt không khí, người ta cho thêm chất gom vào nước. Những chất gom như xantogenat natri, panmitat natri, đietyltiophotphat natri, đầu hỏa ... có khả năng biến vật liệu ưa nước

Hình 63. Sơ đồ của thiết bị tuyển nổi

(không nổi lên) thành kị nước (nổi lên được). Chất gom có tác dụng chọn lọc đối với từng vật liệu.

Những chất có tính chất ngược với chất gom, nghĩa là biến vật liệu nổi được thành vật liệu không nổi, được gọi là *chất ức chế*. Chất ức chế cũng có tác dụng chọn lọc đối với từng vật liệu ví dụ như sữa vôi đối với pirit, sođa đối với sunfua của các kim loại, natri silicat đối với đất sét, natri xianua đối với blenđơ, natri hidrocacbonat đối với galen.

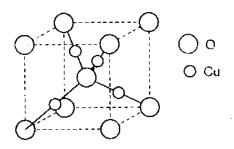
Những chất làm mất tác dụng của chất ức chế được gọi là *chất hoạt hóa*. Những chất hoạt hóa quan trọng nhất là axit sunfuric (đối với pirit), đồng sunfat (đối với blenđơ), natri sunfua, xantogenat và dẫn xuất thơm của tioure (đối với sunfua).

Bằng các chất ức chế và chất hoạt hóa khác nhau, người ta có thể tuyển nổi phân đoạn những quặng phức tạp: tách được khoáng vật có ích ra khỏi đất đá và phân chia các khoáng vật từ quặng đa kim. Đa số các chất gom là axit yếu hoặc bazơ hữu cơ, sự phân li của chúng phụ thuộc nhiều vào pH của dung dịch. Bởi vậy pH của dung dịch và nhiệt độ là những yếu tố quan trọng trong quá trình tuyển nổi.

Phương pháp tuyển nổi được dùng làm giàu và phân chia các khoáng vật sunfua, asenua, antimonua của các kim loại màu (đồng, chì, kẽm, molipđen ...) và cũng để làm giàu khoáng vật chứa oxi của đồng, làm giàu than chì, cao lanh.

HỘP CHẤT CỦA Cu(I), Ag(I) VÀ Ạu(I)

Đồng, bạc và vàng ở trạng thái oxi hóa +1 có cấu hình electron d^{10} . Những ion M^+ đó không chỉ là chất nhận σ mà còn là chất cho π và khả năng cho π này tăng lên từ Cu^+ đến Au^+ vì độ linh hoạt của những cặp electron d tăng lên.


Như đã nói ở trên, trạng thái oxi hóa +1 là đặc trưng nhất đối với Ag, kém đặc trưng

hơn nhiều đối với Cu và nhất là đối với Au. Người ta đã biết nhiều hợp chất của Ag(I) nhưng biết ít hợp chất của Au(I).

Oxit E2 O

Cả ba oxit đều là chất bột, Cu_2O có màu đỏ, Ag_2O màu nâu-đen và Au_2O màu tím. Tình thể Cu_2O và Ag_2O có kiến trúc kiểu lập phương, trong đó những nguyên tử O được gói

ghém kiểu lập phương tâm khối và mỗi một nguyên tử được phối trí tứ diện bởi bốn nguyên tử kim loại. Hình 64 trình bày kiến trúc tinh thể của Cu₂O, trong đó mỗi nguyên tử O liên kết với bốn nguyên tử Cu (hai liên kết cộng hóa trị bình thường và hai liên kết cho-nhận) và mỗi nguyên tử Cu liên kết với hai nguyên tử O (một liên kết cộng hóa trị bình thường và một liên kết cho-nhận: -Cu←). Như vậy mỗi nguyên tử

Hình 64. Kiến trúc tinh thể của Cu₂O

O có vỏ ngoài gồm 8 electron còn mỗi nguyên tử Cu có vỏ ngoài gồm 4 electron.

Đồng(I) oxit rất bền với nhiệt, nóng chảy ở 1240° C, hai oxit còn lại kém bền, bạc(I) oxit phân hủy thành nguyên tố ở trên 200° C và vàng(I) oxit phân hủy thành Au và Au_2O_3 ở trên 220° C nên Au_2O thường được coi là hỗn hợp của hai chất đó.

Cả ba oxit đều tan ít trong nước nhưng tan trong dung dịch kiềm đặc tạo thành cuprit, acgentit và aurit tương ứng.

Ví dụ:

$$Cu_2O + 2NaOH + H_2O = 2Na[Cu(OH)_2]$$

(natri hidroxocuprit)

Trong dung dịch NH3 đặm đặc, Cu2O và Ag2O tan tạo thành phức chất amoniacat:

$$E_2O + 4NH_3 + H_2O = 2[E(NH_3)_2]OH$$

còn Au_2O tạo nên kết tủa đen $Au_3N.NH_3$ là hợp chất không bền, phân hủy nổ khi đun nóng. Trong dung dịch HCl đặc, Cu_2O tan tạo thành phức chất H[$CuCl_2$].

Đồng(I) oxit tồn tại trong thiên nhiên dưới dạng khoáng vật cuprit. Nó được điều chế bằng tác dụng của dung dịch muối đồng(II) trong môi trường kiềm với chất khử (thường là glucozơ, hidroxilamin):

$$2\text{CuSO}_4 + 4\text{NaOH} + \text{C}_6\text{H}_{12}\text{O}_6 = \text{Cu}_2\text{O} + \text{C}_6\text{H}_{12}\text{O}_7 + 2\text{H}_2\text{O} + 2\text{Na}_2\text{SO}_4$$
(axit gluconic)

còn bạc(I) oxit và vàng(I) oxit được điều chế bằng tác dụng của dung dịch muối E(I) với kiềm:

$$2AgNO_3 + 2NaOH = Ag_2O + 2NaNO_3 + H_2O$$

 $2AuCl + 2KOH = Au_2O + 2KCl + H_2O$

Hidroxit EOH

Các hiđroxit này không bền, nhất là AgOH và AuOH. Trong phản ứng điều chế Cu_2O vừa trình bày trên đây, mới đầu tạo nên kết tủa vàng CuOH và khi đun nóng dung dịch, hiđroxit đó phân hủy thành oxit. Còn AgOH và AuOH không tách ra được ở dạng tự do vì ngay khi được tạo thành đã phân hủy. Trong nước, tuy Ag_2O tan ít nhưng có tác dụng một phần với nước làm cho dung dịch có tính kiểm:

$$Ag_2O + H_2O \implies 2AgOH = 2Ag^+ + 2OH^-$$

Thực tế muối AgNO₃ không bị thủy phân, điều đó chứng tỏ AgOH là chất kiềm mạnh. Lợi dụng phản ứng trên người ta có thể điều chế hiđroxit của kim loại kiềm bằng tác dụng của huyền phù Ag₂O trong nước với clorua kim loại.

Ví du:

$$Ag_2O + H_2O + 2RbCl = 2RbOH + 2AgCl$$

Muối E(I)

Đa số muối E(I) dạng tinh thể đều ít tan trong nước. Những muối tan của Ag(I) là AgNO₃, AgClO₄, AgClO₃, AgF. Khi kết tinh từ dung dịch, hầu hết muối Ag(I) đều ở dạng khan, trừ AgF.2H₂O.

Tuy có cấu hình d¹⁰ nhưng ở trong nước chỉ có muối Ag(I) là tương đối bên còn muối Cu(I) và muối Au(I) tự phân hủy:

$$2 \text{ Cu}^+ \implies \text{ Cu} + \text{ Cu}^{2+}, \qquad \text{ E}^\circ = +0.38\text{V}$$

 $3 \text{ Au}^+ \implies 2 \text{ Au} + \text{ Au}^{3+}, \qquad \text{ E}^\circ = +0.3\text{V}$

Chẳng hạn như muối Cu_2SO_4 chỉ có thể điều chế trong dung môi khác nước, ở trong nước tự phân hủy theo phản ứng:

$$Cu_2SO_4$$
 = $Cu + CuSO_4$

hoặc kết tủa màu vàng AuCl tự phân hủy trong nước hay trong dung dịch HCl loãng theo phản ứng:

$$3 \text{ AuCl} = 2\text{Au} + \text{AuCl}_3$$

 $3 \text{ AuCl} + \text{HCl} = 2\text{Au} + \text{H[AuCl}_4]$

Tuy nhiên, ở trong nước, ion Cu^+ và ion Au^+ được làm bền khi tạo thành hoặc kếi tủa ít tan như CuI, CuCN, AuI và AuCN hoặc ion phức tương đối bền như $[Cu(NH_3)_2]^+$, $[CuX_2]$ (trong đó $X=Cl^-$, Br^- , Γ và CN^-), $[Au(CN)_2]$. Một nguyên nhân quan trọng của sự làm bền đó là khả năng nhận π của những anion I và CN^- . Khi có mặt những anion này ở trong dung

dịch, những cân bằng trên đây sẽ chuyển dịch sang bên trái. Ion Ag+ cũng rất để tạo nên những ion phức tương tự và bền.

Những muối Ag(I) được điều chế từ các đơn chất hoặc từ chất đầu là $AgNO_3$, còn những muối Cu(I) và Au(I) được điều chế bằng cách khử những muối Cu(II) và Au(III).

Đồng(I) clorua (CuCl). Đồng(I) clorua, bromua và iođua đều là chất ở dạng tinh thể màu trắng có kiến trúc kiểu sphalerit. Chúng rất bền với nhiệt và tan ít trong nước. Đưới đây là nhiệt độ nóng chảy, nhiệt độ sôi và tích số tan của chúng:

	CuCl	Cu B r	CuI
Nđnc., °C	430	504	605
Nds., °C	1359	1345	1336
Tích số tan	~10.7	~10-9	~10-12

Đồng(I) clorua tan ít trong nước lạnh nhưng phân hủy trong nước nóng.

Nó tan dễ trong dung dịch đậm đặc của NH_3 , HCl, NH_4Cl và clorua kim loại kiềm nhờ tạo thành phức chất.

Ví dụ:

$$CuCl + 2 NH_3 = |Cu(NH_3)_2|Cl$$

 $CuCl + HCl = H|CuCl_3|$

Dung dịch của những phức chất này dễ biến đổi màu vì bị oxi không khí oxi hóa.

Ví du:

$$4[Cu(NH_3)_2]^+ + O_2 + 2H_2O + 8NH_3 = 4[Cu(NH_3)_4]^{2+} + 4OH^-$$

Bởi vậy dung dịch phức chất amoniacat của đồng(I) được dùng để loại khí oxi khỏi các khí hiếm.

Dung dịch CuCl trong NH₃ hoặc HCl hấp thụ khí CO tạo nên dung dịch không màu

của phức chất dạng đime [Cu Cl CO H₂O]₂, khi đun nóng, phức chất đó phân hủy giải phóng khí CO nên dung địch CuCl được dùng để tinh chế khí. Phức chất đó có cấu tao phân tử:

và có thể tách ra ở dạng tinh thể,

Dung dịch CuCl trong HCl có thể hấp thụ khí PH₃ tạo nên phức chất {Cu(PH₃)}Cl. Dung dịch CuCl trong NH₃ có khả năng hấp thụ axetylen hay những hợp chất hữu cơ R−C≡C−R tạo nên Cu₂C₂ hay R−C≡C−Cu là những kết tủa màu đỏ dễ phân hủy nổ khi đun nóng.

Đồng(I) clorua được điều chế bằng tác dụng của Cu₂O với axit clohiđric hoặc bằng tác

dụng của dung dịch CuCl₂ với khí SO₂:

$$Cu_2O + 2HCl = 2 CuCl + H_2O$$

2 CuCl, + SO₂ + 2 H₂O = 2 CuCl + H₂SO₄ + 2 HCl

hoặc bằng tác dụng của đồng kim loại với CuCl2 trong dung dịch HCl:

$$Cu + CuCl_2 + 2HCl = 2 H[CuCl_2]$$

rồi thêm nước vào dung địch thu được để CuCl kết tủa.

Bạc nitrat (AgNO₃), muối bạc thông dụng nhất, là chất ở dạng tinh thể tà phương, không màu, nóng chảy ở 209,7°C. Nó dễ tan trong nước, độ tan biến đổi nhiều theo nhiệt độ, tan cả trong ete, rượu etylic, axeton.

Khi đun nóng đến 300°C bạc nitrat phân hủy:

$$2 AgNO_3 = 2Ag + 2 NO_2 + O_2$$

Nó dễ bị khử thành kim loại bởi những chất hữu cơ như giấy, glucozơ, focmandehit, axit tactric... Khi tác dụng với những chất khử đó, dụng dịch AgNO₃ trong NH₃ tạo nên lớp kết tủa sáng bám chắc trên kính gọi là gương. Dựa vào tính chất đó người ta dùng AgNO₃ để nhận biết axit tactric và để tráng gương.

$$2 [Ag(NH_3)_2]NO_3 + H_2O + HCHO = 2Ag + HCOONH_4 + NH_3 + 2 NH_4NO_3$$

 $Ch\hat{u}$ ý: Không được cất giữ lâu dung dịch amoniacat bạc vì khi để lâu, từ dung dịch sẽ sinh ra kết tủa đen Ag_3N lắng xuống đáy thành bình, kết tủa này rất để phân hủy nổ ở điều kiện thường.

Do tác dụng được với các mô cơ thể, người ta dùng dung dịch AgNO₃ làm thuốc sát trùng. Nó là một trong những thuốc thứ thông dụng nhất trong phòng thí nghiệm và là chất đầu để điều chế những hợp chất khác của bạc.

Bạc nitrat được điều chế bằng cách hòa tan bạc kim loại trong axit nitric.

Bac halogenua (AgX), ở đây X = halogen. Dưới đây là một số tính chất của bạc halogenua:

Tính chất	AgF	AgCl	AgBr	AgI
Kiến trúc tinh thể	Lập phương kiểu NaCl	Lập phương kiểu NaCl	Lập phương kiểu NaCl	Lập phương kiểu ZnS
Màu	Trắng	Trắng	Vàng nhạt	Vàng
N đnc.,⁰C	435	455	432	554
Nds., °C	Phân hủy	1550	Phân hủy ở 700	Phân hủy ở 554
Tích số tan,TT	Dễ tan	1,8.10-10	5.10 ⁻¹³	8,3.10-17

Sự tăng màu và sự giảm độ tan của bạc halogenua từ florua đến iođua được giải thích là anion X^- có bán kính càng lớn càng dễ biến dạng, nghĩa là càng dễ bị cực hóa bởi tác dụng của cation Ag^+ . Tính dễ bị cực hóa đó cũng là nguyên nhân làm giảm độ bền nhiệt của các kết từa bạc halogenua. Thật vậy bạc clorua bền nhất đối với nhiệt, các halogenua khác phân hủy trước khi đến nhiệt độ sôi. Tuy nhiên, ở nhiệt độ thường dưới tác dụng của ánh sáng các halogenua khó tạn của bạc phân hủy dần tạo thành bạc kim loại và halogen tự do:

$$2 \text{ AgX} = 2 \text{Ag} + X_2$$
 (ở đây X = Cl, Br và I)

Sự phân hủy đó gây nên bởi các tia vùng chàm-tím của ánh sáng trông thấy trong khi các tia đỏ không có tác dụng. Phản ứng phân hủy này đưa đến công dụng quan trọng của muối bạc trong ngành ảnh.

Những muối AgCl, AgBr và AgI tuy không tan trong nước nhưng tan với mức độ khác nhau trong dung dịch NH_3 và tan hoàn toàn trong dung dịch HX đậm đặc (X = Cl, Br và I), dung dịch $Na_2S_2O_3$, dung dịch NaCN nhờ tạo thành phức chất.

Ví dụ quá trình hòa tan kết tủa AgX trong dung dịch NH3 có các hằng số cân bằng:

$$AgCl + 2NH_3 \implies [Ag(NH_3)_2]^+ + Cl^- \qquad K = 1,8.10^{-2}$$

 $AgBr + 2NH_3 \implies [Ag(NH_3)_2]^+ + Br^- \qquad K = 5,0.10^{-5}$
 $AgI + 2NH_3 \implies [Ag(NH_3)_2]^+ + I^- \qquad K = 8,3.10^{-9}$

Những hằng số cân bằng này tính được khi kết hợp 2 quá trình phân li của muối halogenua và ion phức $|Ag(NH_3)_2|^{+}$.

Qua các hằng số cân bằng trên đây, có thể kết luận rằng trong dung dịch NH_3 đậm dặc, AgCl tan hoàn toàn, AgBr tan một phần còn AgI thực tế không tan.

Tính toán tương tự như vậy ta thấy AgCl, AgBr và AgI có thể tan hoàn toàn trong các dung dịch $Na_2S_2O_3$ và NaCN vì hằng số bền của những ion phức $[Ag(S_2O_3)_2]^{3^+}$ và $[Ag(CN)_2]^-$ là $2.8.10^{13}$ và $7.8.10^{19}$ tương ứng, nghĩa là những ion đó rất bền hơn ion phức $[Ag(NH_3)_2]^+$. Tuy nhiên, người ta có thể kết tủa bạc từ dung dịch những phức chất đó bằng khí H_2S hoặc Na_2S vì Ag_2S là một trong những muối ít tan nhất.

Ví dụ:

$$2K[Ag(CN)_2] + 2H_2S = Ag_2S + K_3S + 4HCN$$

Các bạc halogenua được điều chế trực tiếp từ đơn chất, những halogenua khó tan còn được kết tủa dễ dàng từ dung dịch bằng phản ứng trao đổi.

Hóa học và kĩ thuật nhiếp ảnh

Cơ sở hóa học của kỹ thuật nhiếp ảnh là tính nhạy cảm của bạc halogenua đối với ánh sáng. Người ta thường dùng AgBr vì AgCl kém nhạy hơn còn AgI quá nhạy. Phim ảnh và giấy ảnh gồm chủ yếu một lớp mỏng, khoảng 20µ, của huyền phù AgBr trong gelatin phết lên trên

màng xenluloit trong suốt hay giấy trắng (Bản ảnh đầu tiên được làm ra từ năm 1837 gồm có lớp AgI phủ trên lá đồng).

Khi chiếu sáng lên phim ảnh, AgBr phân hủy thành bạc kim loại và brom, brom hóa hợp với gelatin còn bạc được tạo ra ở dạng những tinh thể mắm rất bé. Những tinh thể đó sinh ra càng nhiều tại những chỗ được chiếu sáng nhiều. Phim ảnh, sau khi được chiếu sáng trong một thời gian rất ngắn, tuy bề ngoài không có gì thay đổi nhưng bên trong đã có hình ảnh ẩn của vật được chup. Để thấy rõ hình, người ta làm hiện hình trên phim ảnh bằng cách tiếp tục khử AgBr thành Ag kim loại ở dạng hạt rất nhỏ có màu đen. Thuốc hiện hình thường gồm có chất khử hữu cơ như hiđroquinon [C₆H₄(OH)₂] hay metol [(C₆H₄OHNH₂CH₃)₂SO₄] và chất khử vô cơ như NaHSO₃. Điều quan trọng ở đây là quá trình khứ AgBr xảy ra và nhanh nhất ở xung quanh những tinh thể mẩm của bạc đã có sẵn trong ảnh ẩn. Do đó ảnh ẩn hiện ra rõ hơn nhờ sự xuất hiện những hạt bạc đen. Sau đó người ta định hình cho phim ảnh để làm cho nó mất tính nhạy với ánh sáng. Thuốc định hình thường dùng là dung dịch Na₂S₂O₃ có khả năng hòa tan lớp AgBr còn lại trên phim ảnh:

$$AgBr + 2Na_2S_2O_3 = Na_3[Ag(S_2O_3)_2] + NaBr$$

Hình thấy rõ, sau khi đã định hình, sẽ bền với ánh sáng và ngược với vật được chụp (bản âm).

Muốn có ảnh thật của vật được chụp (bản dương), người ta đặt phim ảnh lên trên giấy ảnh cũng được tráng lớp AgBr mỏng rồi chiếu sáng. Ánh sáng dễ đi qua chỗ sáng của phim và khó đi qua chỗ tối của phim. Bởi vậy trên giấy ảnh, sau khi đã được làm hiện hình và định hình giống như đã làm đối với phim ảnh, sẽ xuất hiện ảnh thật của vật cần chụp.

Phim và ảnh đen-trắng khi chế hóa với dung dịch AuCl₃ sẽ có màu tím-đỏ nhạt vì phản ứng:

$$3Ag + Au^{3+} = Au + 3Ag^{+}$$

HOP CHẤT CỦA Cu(II) VÀ Ag(II)

Trạng thái oxi hóa +2 là rất đặc trưng đối với đồng. Có nhiều hợp chất của Cu(II), rất ít hợp chất của Ag(II) và không có hợp chất của Au(II).

Đồng(II) oxit

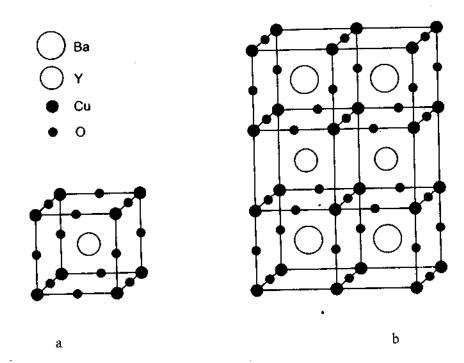
 $D\ddot{o}ng(H)$ oxit (CuO) là chất bột màu đen có kiến trúc tinh thể chưa biết được chính xác, nóng chảy ở 1026° C và trên nhiệt độ đó mất bớt oxi biến thành Cu_2O .

 $\hat{\mathbf{Dong}}(\mathbf{H})$ oxit không tan trong nước nhưng tan dễ trong dung dịch axit tạo thành muối $\mathbf{Cu}(\mathbf{H})$ và trong dung dịch \mathbf{NH}_3 tạo thành phức chất amoniacat:

$$CuO + 2HCl = CuCl_2 + H_2O$$

$$CuO + 4NH_3 + H_2O = [Cu(NH_3)_4](OH)_2$$

Người ta lợi dụng phản ứng thứ hai để loại khí O₂ ra khỏi các khí: cho khí cần tinh chế đi qua bình đưng phoi đồng đã đổ ngập dung dịch NH₃, khí O₂ là tạp chất sẽ tác dụng với phoi đồng tạo thành CuO và CuO tan ngay trong dung dịch NH₃ nên oxi tiếp tục tác dụng với phoi đồng.


Khi đun nóng với dung dịch SnCl2, FeCl2, đồng(II) oxit bị khử thành muối đồng(I):

$$2CuO + SnCl_2 = 2CuCl + SnO_2$$

 $3CuO + 2FeCl_2 = 2CuCl + CuCl_2 + Fe_2O_3$

Khi đun nóng, CuO dễ bị các khí H2, CO, NH3 khử thành kim loại.

Ví dụ:

$$CuO + CO = Cu + CO_2$$

Hình 65. Kiến trúc lập phương kiểu peropskit (a) Kiến trúc tinh thể của YBa₂Cu₃O₇ (b)

Tính lưỡng tính của CuO thể hiện khi tan trong kiềm nóng chảy tạo thành cuprit: $\stackrel{+}{\rm M}_2^1 {\rm CuO}_2$, $\stackrel{+}{\rm M}_2^2 {\rm CuO}_3$ và cả $\stackrel{+}{\rm M}^1 {\rm CuO}_2$. Kiến trúc của các cuprit này đã được các nhà nghiên cứu quan tâm nhiều sau phát hiện của hai nhà vật lí người Thụy Sĩ là Bednorz và Muller vào năm

1986 về *tính siêu dẫn ở nhiệt độ cao* của gốm chứa đồng, bari và đất hiếm (Năm 1987 hai ông đã được giải thưởng Noben về phát minh gốm siêu dẫn đầu tiên). Một gốm quen thuộc nhất với thành phần gần đúng là YBa₂Cu₃O₇ có tính siêu dẫn ở nhiệt độ ~90°K và có mạng lưới tinh thể kiểu peropskit $\stackrel{+2}{A}$ BO₃, trong đó Y³⁺ và Ba²⁺ chiếm vị trí của A, Cu²⁺ chiếm vị trí của B (Hình 65) và khuyết một phần O.

Hiện nay chưa có lí thuyết nào nói về tính siêu dẫn của gốm. Tuy nhiên, người ta cho rằng sự tự phân hủy $Cu(II) \rightarrow Cu(I) + Cu(III)$ là điều kiện cần để sinh ra tính siêu dẫn và có lẽ sự tự phân hủy đó xảy ra được là nhờ liên kết Cu-O chủ yếu là cộng hóa trị. Sau những gốm siêu dẫn chứa đồng người ta đã nghiên cứu những gốm siêu dẫn khác có kiến trúc tương tự, trong đó đồng được thay bằng TI hay Bi.

Đồng(II) oxit được dùng để tạo màu lục cho thủy tinh và men. Thủy tinh chứa keo đồng có màu đỏ thấm.

Đồng(II) oxit được điều chế trực tiếp từ đơn chất hoặc bằng cách nhiệt phân hidroxit, nitrat hay cacbonat.

Ví dụ:

$$2Cu + O_{2}^{\bullet} = 2CuO$$

$$(du)$$

$$50-80^{\circ}C$$

$$Cu(OH)_{2} = CuO + H_{2}O$$
(trong nuớc)

Đồng(II) hiđroxit

 $D\hat{o}ng(II)$ hidroxit (Cu(OH)₂) là kết tủa bông màu lam, dễ mất nước biến thành oxit khi đun nóng trong dụng dịch.

Nó không tan trong nước nhưng tan dễ dàng trong dung dịch axit, dung dịch NH₃ đặc và chỉ tan trong dung dịch kiểm 40% khi đun nóng.

Ví du:

$$Cu(OH)_2 + 2NaOH = Na_2[Cu(OH)_4]$$

 $Cu(OH)_2 + 4NH_3 = [Cu(NH_3)_4](OH)_2$

Dung dịch màu chàm của tetraammin đồng hidroxit có khả năng hòa tan nitroxenlulozo, xenlulozo và được gọi là *nước Suâyze* (M.E. Schweitzer, 1818-1860, phát hiện tính chất đó năm 1857). Khi pha loãng nước hay thêm axit vào dung dịch trên, xenlulozo lại kết tủa. Do đó, nước Suâyze được dùng vào việc sản xuất sợi nhân tạo.

Đồng(II) hidroxit được điều chế bằng tác dụng của kiềm với dung dịch muối đồng(II) nguội.

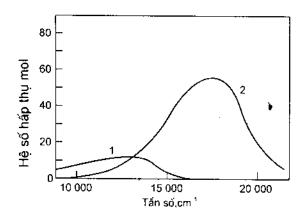
Muối đồng(II)

Đa số muối đồng(II) dễ tan trong nước, bị thủy phân và khi kết tinh từ dung dịch thường ở dạng hiđrat. Dung dịch loãng của muối tan có màu lam, màu của ion $[Cu(H_2O)_6]^{2+}$, trong khi ở trạng thái rắn các muối có màu khác.

Ion $[Cu(H_2O)_6]^{2+}$ có cấu hình bát diện lệch với ion Cu^{2+} ở trung tâm, trong đó hai phân tử H_2O ở cách Cu^{2+} xa hơn so với bốn phân tử H_2O còn lại. Như đã biết ở trên, trong ví dụ về ion Cu^{2+} với cấu hình d^9 , ta có thể thấy cụ thể hơn hiệu ứng Jan-Telo. Trong sự phối trí bát điện quanh ion Cu^{2+} , kiến trúc luôn bị sai lệch. Ví dụ như những hợp chất CuF_2 , $CuCl_2$, $CuBr_2$, $CsCuCl_3$ có kiến trúc bát diện kéo dài và những hợp chất $KCuF_3$, K_2CuF_4 có kiến trúc bát diện dẹt. Như vậy sự phối trí hình vuông phát hiện được ở tinh thể CuO và ở nhiều phức chất của Cu(II) chỉ là trường hợp giới hạn của bát diện bị sai lệch do hiệu ứng Jan-Telo chứ không phải là một kiểu phối trí mới đối với ion Cu^{2+} .

Ion Cu^{2+} là chất tạo phức mạnh. Những ion phức quen thuộc của Cu^{2+} là $[CuX_3]^-$, $[CuX_3]^{2+}$ (trong đó X = F, Cl và Br), $[Cu(NH_3)_4]^{2+}$, $[Cu(C_2O_4)_2]^{2-}$, $[Cu(en)_2]^{2+}$, (trong đó en là etylendiamin $H_2N-CH_2-CH_2-NH_2$).

Sơ đồ thế oxi hóa-khử cho thấy ở trong nước iọn Cu²⁺ không để chuyển thành ion Cu⁺ nhưng khi có mặt những anion có khả năng tạo nên hợp chất ít tan với Cu⁺, khả năng oxi hóa của ion Cu²⁺ tăng lên nhiều. Ví dụ như muối Cu(II) tác dụng với dung dịch NaI, dung dịch NaCN theo các phản ứng:


$$2CuSO_4 + 4NaI = 2CuI + I_2 + 2Na_2SO_4$$

 $2CuSO_4 + 4NaCN = 2CuCN + (CN)_2 + 2Na_2SO_4$

Người ta dùng phản ứng thứ nhất để định lượng ion Cu²⁺ và phản ứng thứ hai để điều chế đixian.

Nói chung khi gặp các chất khử, muối đồng(II) có thể chuyển thành muối đồng(I) hoặc đồng kim loại.

Khi thêm NH₃ vào dung dịch nước của muối Cu(II), những phân tử H₂O trong $|\text{Cu}(\text{H}_2\text{O})_6|^{2+}$ lần lượt bị thay thế dễ dàng bởi những phân tử NH₃ tạo nên những ion phức $|\text{Cu}(\text{NH}_3)(\text{H}_2\text{O})_5|^{2+},...,...$, $|\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2|^{2+}$ nhưng việc đưa tiếp vào ion phức những phân tử NH₃ thứ năm và thứ sáu gặp khó khān. Trong dung dịch nước nói chung không phát hiện được một lượng rõ rệt của ion phức với sáu phân tử NH₃. Ion phức hexaammin $|\text{Cu}(\text{NH}_3)_6|^{2+}$ chỉ có thể tạo nên ở trong amoniac lỏng. Tính chất bất thường đó có liên quan với hiệu ứng Jan-Telo. Kết quả của hiệu ứng đó là ion Cu^{2+} liên kết yếu với phối tử thứ năm và phối tử thứ sáu, kể cả khi phối tử đó là H_2O . Tương tự như vậy khi thêm dư etylenđiamin vào dụng dịch muối Cu(II) người ta cũng chỉ thu được $|\text{Cu}(\text{en})_2(\text{H}_2\text{O})_2|$. Liên kết của Cu với hai phân tử H_2O ở trong $|\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2|^{2+}$, và $|\text{Cu}(\text{en})_2(\text{H}_2\text{O})_2|^{2+}$ đều yếu (yếu hơn so với liên kết tương ứng ở trong $|\text{Cu}(\text{H}_2\text{O})_6|^{2+}$) đến mức có thể coi như không có. Bởi vậy những ion phức của Cu^{2+} với NH_3 và etylenđiamin trên đây thường được biểu diễn bởi công thức $|\text{Cu}(\text{NH}_3)_4|^{2+}$ và $|\text{Cu}(\text{en})_2|^{2+}$ với

44 14 cấu hình hình vuông.

Hình 66. Phố hấp thụ của $[Cu(H_2O)_n]^{2+}(1)$ và $[Cu(NH_3)_a]^{2+}(2)$

Sự biến đổi màu từ xanh lam của $[Cu(H_2O)_6]^{2+}$ đến xanh chàm của $[Cu(NH_3)_4]^{2+}$ và xanh chàm đậm của $\{Cu(en)_2\}^{2+}$ là gây nên bởi sự tăng trường phối tử từ H_2O , NH_3 đến en đã làm chuyển dịch dải hấp thụ từ vùng đỏ xa về vùng đỏ trung bình của quang phổ trông thấy. Thật vậy qua hình 66, ta thấy ion $[Cu(H_2O)_6]^{2+}$ có cực đại hấp thụ $\mathring{\sigma} \sim 8000 \mathring{\Lambda}$ và ion $[Cu(NH_3)_4]^{2+}$ có cực đại hấp thụ $\sim 6000 \mathring{\Lambda}$. Còn cường độ của màu thì có liên quan với hệ số hấp thụ của phức chất. Sự tăng hệ số hấp thụ xảy ra nếu sự thay đổi thành phần và cấu tạo của phức chất loại bỏ được sự ngăn cấm chuyển dời electron. Trong ion bát diện $[Cu(H_2O)_6]^{2+}$ có tác dụng của sự ngăn cấm về tính đối xứng còn trong ion tứ giác $[Cu(NH_3)_4]^{2+}$ không có tâm đối xứng nên không chịu sự ngăn cấm chuyển dời electron. Ngoài ra liên kết $Cu-NH_3$ có tính chất cộng hóa trị hơn liên kết $Cu-H_2O$ nên trong $[Cu(NH_3)_4]^{2+}$ có sự chuyển điện tích từ phối từ đền cation kim loại mà sự chuyển này cũng loại bỏ sự ngãn cấm chuyển dời electron và làm tăng mạnh cường độ màu.

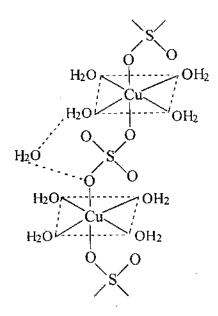
Đồng(II) clorua (CuCl₂) là chất ở dạng tinh thể màu nâu nóng chảy ở 596°C và sôi ở 993°C có phân hủy thành CuCl và Cl₂. Đồng(II) clorua là polime vô cơ, ở trạng thái hơi có cấu tạo mạch dài:

ở trạng thái tính thể, những mạch dài đó chồng lên nhau làm cho mỗi nguyên tử Cu được sáu nguyên tử Cl bao quanh tạo thành bát diện lệch:

Đồng(II) clorua dễ tan trong nước, rượu, etc và axeton. Khi kết tinh từ dung dịch nước, nó tách ra dưới dạng đihiđrat $\text{CuCl}_2.2\text{H}_2\text{O}$.

Đihiđrat đồng(II) clorua là những tinh thể màu lục cũng có kiến trúc lập phương lệch như đồng(II) clorua khan nhưng trong đó mỗi nguyên tử Cu được phối trí bởi bốn nguyên tử Cl và hai phân tử nước:

$$\begin{array}{c|c} OH_2 & OH_2 & OH_2 \\ \hline \\ Cu & Cu & Cu \\ OH_2 & OH_2 & OH_2 \end{array}$$


Dung dịch đậm đặc của $\text{CuCl}_2.2\text{H}_2\text{O}$ ở trong nước vẫn có màu lục nhưng dung dịch loãng có màu lam, màu đặc trung của ion $[\text{Cu}(\text{H}_2\text{O})_6]^{2+}$.

Đồng(II) clorua có thể tạo nên với clorua kim loại kiềm và amoni những phức chất $M[CuCl_3]$ và $M_2[CuCl_4]$. Đáng chú ý là ion $[CuCl_4]^{2^-}$ có cấu hình hình vuông, trong $(NH_4)_2[CuCl_4]$ màu vàng nhưng có cấu hình tứ diện dẹt, trong $Cs_2[CuCl_4]$ màu da cam.

Đihiđrat CuCl₂.2H₂O được điều chế bằng cách hòa tan đồng kim loại trong cường thủy hoặc đồng(II) oxit trong axit clohiđric. Muối khan được điều chế trực tiếp từ các đơn chất hoặc bằng cách làm mất nước của đihiđrat ở 150°C.

 $D\ddot{o}ng(II)$ sunfat (CuSO₄) là bột màu trắng, hút mạnh hơi ẩm của không khí tạo thành hiđrat CuSO₄.5H₂O màu lam. Lợi dụng tính chất này, người ta dùng CuSO₄ khan để phát hiện nước ở lẫn trong hợp chất hữu cơ.

Pentahiđrat $CuSO_4.5H_2O$ là những tinh thể tam tà màu xanh lam, trong đó ion Cu^{2+} được phối trí kiểu bát diện lệch. Bao quanh ion Cu^{2+} có bốn phân tử H_2O cùng nằm trên một mặt phẳng, hai nhóm SO_4^{2-} nằm ở hai phía của mặt phẳng và trên cùng một trực còn phân tử H_2O thứ năm, bằng liên kết hiđro, liên kết với một phân tử H_2O của mặt phẳng và với một nhóm SO_4^{2-} :

Khi đun nóng, pentahiđrat mất dần nước và đến 250°C biến thành muối khan:

$$CuSO_4.5H_2O \xrightarrow{100^{\circ}C} CuSO_4.3H_2O \xrightarrow{150^{\circ}C} CuSO_4.H_2O \xrightarrow{250^{\circ}C} CuSO_4$$

Khi tác dụng với khí NH_3 , pentahiđrat tạo nên tinh thể $[Cu(NH_3)_4]SO_4.H_2O$ màu chàm đậm. Tinh thể hiđrat này cũng tách ra khi cho thêm rượu vào dung dịch của $CuSO_4$ trong amoniac đâm đặc.

Nước Felinh (H.Fehling, 1812-1885, tìm ra năm 1849) là dung dịch của $CuSO_4$ và kali natri tạctrat (KNa $C_4H_4O_6$) trong dụng dịch NaOH 10%, có màu chàm đậm của ion phức $[Cu(C_4H_4O_6)_2]^2$, được dùng làm thuốc thử để phát hiện anđehit hay monosacarit trong hóa học hữu cơ. Khi đun nóng với những chất đó, từ nước Felinh màu xanh chàm sẽ xuất hiện kết tủa đỏ của Cu_2O .

Ví du:

 $2Na_{2}[Cu(C_{4}H_{4}O_{6})_{2}] + NaOH + CH_{3}CHO + H_{2}O = Cu_{2}O + CH_{3}COONa + 2H_{2}C_{4}H_{4}O_{6} + 2Na_{2}C_{4}H_{4}O_{6} + 2Na_{2}C$

Nước Felinh được dùng trong y học để xác định hàm lượng đường trong nước tiểu của người mắc bệnh đái đường.

Đồng(II) sunfat tác dụng với sunfat kim loại kiềm hay amoni tạo thành sunfat kép M₂SO₄.CuSO₄.6H₂O.

Hiđrat ${\rm CuSO_4.5H_2O}$ là hóa chất thông dụng nhất của đồng. Nó được dùng vào việc tinh chế đồng kim loại bằng phương pháp điện phân, dùng làm thuốc trừ sâu trong công nghiệp và dùng để điều chế nhiều hợp chất của đồng.

Pentahiđrat được điều chế bằng cách hoà tan đồng(II) oxit, hiđroxit hay cacbonat trong dụng dịch axit sunfuric. Muối khan được tạo nên khi làm mất nước của pentahiđrat ở 250° C.

Đồng(II) axetat là chất dạng tinh thế màu lục, dễ tan trong nước. Nó có cấu tạo đime $[Cu(CH_3COO)_2,H_2O]_2$ giống như crom(II) axetat, trong đó nguyên tử Cu ở trạng thái lai hóa d²sp³, những nhóm CH_3COO^- là cầu nối giữa hai nguyên tử Cu. Tính nghịch từ của chất cho thấy có tương tác giữa hai electron độc thân của hai nguyên tử đồng nhưng khoảng cách giữa hai nguyên tử đó là 2,64Å lớn hơn khoảng cách Cu–Cu trong tinh thể đồng kim loại (2,56Å). Như vậy khác với crom(II) axetat và molipđen(II) axetat, liên kết Cu–Cu trong đime đồng(II) axetat là liên kết đơn và yếu. Điều này cũng phù hợp với sự phân li hoàn toàn thành ion của đime khi tan trong nước.

 $D \hat{o}ng(H)$ axetat được tạo nên khi hòa tan $d \hat{o}ng(H)$ oxit trong axit axetic. Cô đặc dung dịch thu được, tinh thể đime sẽ tách ra.

Hop chất của bạc(II)

Bac(H) oxit (AgO) là chất dạng tinh thể lập phương màu đen, không tan trong nước, bên ở nhiệt độ thường, phân hủy thành nguyên tố ở 100° C và phân hủy nổ ở 110° C.

Bằng phương pháp từ-hóa học, người ta biết AgO là chất nghịch từ, trong đó bạc có thể tồn tại ở trạng thái Ag(I) với cấu hình d¹⁰ và trạng thái Ag(III) với cấu hình d⁸. Bằng phương pháp nhiễu xạ nơtron, người ta xác định được trong tinh thể AgO có hai loại nguyên tử Ag: những mạch -Ag-O-Ag- và những nhóm hình vuông AgO_4 mà Ag nằm ở tâm. Như vậy bạc(II) oxit là oxit của Ag(I) và Ag(III) với công thức $\stackrel{+i}{Ag} \stackrel{+3}{Ag} O_2$.

Bạc(II) oxit tan trong axit giải phóng khí oxi nhưng tạo nên ion Ag2+ trong dung dịch.

Nó là chất oxi hóa rất mạnh, $E^{\sigma}_{Ag^{2+}/Ag^{4}}$ =1,89V so với $E^{\sigma}_{Cu^{2+}/Cu^{+}}$ = 0,153V. Trong dung dịch, ion Ag^{2+} chỉ có thể tồn tại trong phức chất với những phối tử hữu cơ như pyriđin, địpyriđyl, phenantrolin với cầu ngoại là anion pesunfat: $[Ag(py)_4]S_2O_8$, $[Ag(dipy)_2]S_2O_8$ và $[Ag(phen)_2]S_2O_8$.

Do có tính oxi hóa mạnh, AgO được dùng để chế *ăc quy kiểm*. Ác quy gồm có điện cực dương làm bằng bột mịn của hỗn hợp AgO và Ag_2O , điện cực âm làm bằng bột nén của Zn, nhúng trong dụng dịch KOH. Quá trình xảy ra trong ắc quy là:

$$AgO + Zn = \frac{phóng diện}{tích diện} Ag + ZnO$$

Thế hiệu của ặc quy là 1,85V. Ác quy kiểm-bạc gọn nhẹ hơn ặc quy chì và ặc quy kiểm-niken nên được dùng trong máy bay phán lực và kĩ thuật vũ trụ.

 $\mathrm{Bac}(\mathrm{II})$ oxit được điều chế bằng cách đun sôi $\mathrm{Ag}_2\mathrm{O}$ với pesunfat trong dung dịch kiềm.

Bac(II) florua (AgF₂), hợp chất đơn duy nhất của Ag²⁺, là chất dạng tinh thể màu nâu, nóng chảy ở 690°C. Nó bị nước phân hủy theo phản ứng:

$$6AgF_2 + 3H_2O = 6AgF + 6HF + O_3$$

Bac(II) florua là chất oxi hóa mạnh và là tác nhân flo hóa mạnh (nguồn flo nguyên tử):

$$AgF_2 \rightarrow AgF + \overset{\circ}{F}$$

Bạc(II) florua được điều chế bằng tác dụng của khí F_2 với bạc kim loại hay với AgF ở ~250°C.

HỢP CHẤT CỦA Au(III)

Trạng thái oxi hóa +3 là đặc trưng nhất đối với vàng. Người ta biết được nhiều hợp chất của Au(III) chủ yếu là những phức chất, ít hợp chất của Cu(III) và Ag(III). Những hợp chất của Au(III) đều là chất oxi hóa mạnh.

Vàng(III) oxit

Vàng(III) oxit (Au₂O₃) là chất bột màu nâu, kém bền, phân huỷ dưới tác dụng của ánh sáng hoặc khi đun nóng đến 160°C. Nó được tạo nên khi làm mất nước của vàng(III) hiđroxit ở 150°C trong chân không.

Vàng(III) hidroxit

Vàng(III) hiđroxit (Au(OH)₃) là chất bột màu nâu đỏ, không tan trong nước. Ở nhiệt độ thường, nó mất dẫn nước biến thành dạng meta AuOOH, khi đun nóng biến thành Au₂O₃.

Hidroxit cũng như oxit đều có tính lưỡng tính, tan trong dung dịch kiểm và axit tạo nên phức chất:

$$Au(OH)_3 + NaOH = Na[Au(OH)_4]$$

 $Au(OH)_3 + 2H_2SO_4 = H[Au(SO_4)_2] + 3H_2O$
 $Au(OH)_3 + 4HNO_3 = H[Au(NO_3)_4] + 3H_2O$

Vàng(III) hidroxit được tạo nên khi cho dung dịch muối vàng(III) tác dụng với dung dịch kiểm.

Vàng(III) clorua

Vang(HI) clorua (AuCl₃) là chất dạng tinh thể màu đỏ ngọc. Nó có cấu tạo đime ở trạng thái rắn cũng như trạng thái hơi:

Khi đun nóng trên 175°C nó mất bớt clo biến thành AuCl:

$$Au_2Cl_6 = 2AuCl + 2Cl_2$$

và đến 290°C phân hủy thành nguyên tố.

Vàng(III) clorua tan trong nước, rượu và ete. Khi tan trong nước, nó bị thủy phân một phần cho dung dịch có màu da cam:

Vàng(II) clorua kết hợp với axit clohidric tạo thành axit tetracloroauric:

Axit này cũng tạo nên khi hòa tan vàng trong cường thủy. Khi cô đặc dung dịch, thu được những hiđrat tinh thể hình kim màu vàng $H[AuCl_4].4H_2O$.

Vàng(III) clorua kết hợp với muối clorua kim loại kiểm tạo nên phức chất M[AuCl₄]. Những phức chất trên đây của vàng(III) đều dễ tan trong nước và dung môi hữu cơ. Những anion phức của vàng(III) có cấu hình hình vuông giống với những anion phức của Ni(II), Pd(II) và Pt(II). Đó là cấu hình đặc trưng của ion phức có cấu hình electron d⁸.

Vàng(III) clorua có tính oxi hóa mạnh, dễ bị khử hơn so với muối của bạc (I).

Ví dụ:

$$2AuCl_3 + 3H_2O_2 = 2Au + 3O_2 + 6HCl$$

 $AuCl_3 + 3FeSO_4 = Au + Fe_2(SO_4)_3 + FeCl_3$
 $AuCl_3 + 4Na_2S_2O_3 = Na_3[Au(S_2O_3)_2] + Na_2S_4O_6 + 3NaCl$

Vàng(III) clorua là hóa chất thông dụng nhất của vàng và là chất đầu để điều chế các hợp chất khác của vàng. Nó được điều chế bằng tác dụng của vàng bột với khí clo ở 250° C hoặc bằng cách đun nóng $H[AuCl_4].4H_2O$ ở 120° C.

CHƯƠNG X

CÁC NGUYÊN TỐ NHÓM IIB

Nhóm IIB gồm các nguyên tố: kẽm (Zn), catmi (Cd) và thủy ngân (Hg). Dưới đây là một số đặc điểm của các nguyên tố đó (Bảng 24).

Bảng 24 Đặc điểm của các nguyên tố Zn, Cd và Hg

Nguyên tố (E)	Số thứ tự nguyên	Cấu hình electron	Năng lư	ong ion l	hóa, eV	Bán kính nguyên	Thế điện cực chuẩn,
	tử	nguyên tử	I,	I ₂	I_3	tử, Å	V
Zn	30	[Ar]3d ¹⁰ 4s ²	9,39	17,96	39,90	1,39	- 0,763
Cd	48	[Kr]4d ¹⁰ 5s ² ·	8,99	16,90	37,47	1,56	- 0,402
Hg	80	[Xe] 4f ¹⁴ 5d ¹⁰ 6s ²	10,43	18,75	32,43	1,60	0,854

Kẽm, catmi và thủy ngân là những nguyên tố đứng cuối cùng trong ba dãy nguyên tố d. Nguyên tử của chúng có các obitan d đã điền đủ 10 electron giống như những nguyên tử Cu, Ag và Au nhưng cấu hình electron (n-1)d¹⁰ trong trường hợp này là tương đối bền. Thật vậy trong khi những nguyên tử Cu, Ag và Au có thể mất một hoặc hai electron d tạo nên những trạng thái oxi hóa +2 hoặc +3, những nguyên tử Zn, Cd và Hg không có khả năng đó, nghĩa là electron hoá trị của chúng chỉ là electron s. Nguyên nhân là năng lượng ion hóa thứ ba rất cao của chúng đã làm cho năng lượng sonvat hóa hay năng lượng tạo thành mạng lưới tinh thể không đủ để làm bền được cho trạng thái oxi hóa +3. Trạng thái oxi hóa cao nhất của cả ba nguyên tố chỉ là +2.

Tổng năng lượng ion hóa thứ nhất và thứ hai của nguyên tử của ba nguyên tố này lớn hơn nhiều so với nguyên tố nhóm IIA ở trong cùng chu kì. Bởi vậy so với Ca, Sr và Ba, các nguyên tố nhóm IIB kém hoạt động hóa học hơn nhiều, nhất là thủy ngân. Điều này cũng được giải thích là vỏ 18 electron trong những nguyên tử Zn, Cd và Hg chắn các electron s với hạt

nhân kém hiệu quả hơn so với vỏ 8 electron bền của khí hiếm trong những nguyên tử Ca, Sr và Ba. Sự giảm tổng năng lượng ion hoá đó từ Zn đến Cd có liên quan đến sự tăng bán kính nguyên tử và sự tăng lên ở Hg có nguyên nhân là những electron 6s² xâm nhập vào không chỉ electron 5d¹0 mà cả những electron 4f¹⁴ nữa. Chính độ bền cao của cặp electron 6s² cũng làm cho năng lượng ion hoá của Hg cao hơn tất cả những nguyên tố d khác và làm cho thủy ngân khác nhiều với Zn và Cd về một số tính chất. Ví dụ như thế điện cực của Hg có giá trị dương tương đối lớn trong khi của Zn và Cd có giá trị âm, đa số hợp chất của Hg kém bền hơn so với hợp chất tương ứng của Zn và Cd, thuỷ ngân có khả năng tạo thành ion Hg_2^{2+} với liên kết kim loại-kim loại (-Hg-Hg-), trong đó Hg có số oxi hóa +1.

Nếu định nghĩa kim loại chuyển tiếp là nguyên tố mà nguyên tử của nó ở trạng thái trung hòa hoặc ở một trạng thái oxi hóa nào đó có obitan d hay f chưa điền đủ electron thì Cu, Ag và Au là kim loại chuyển tiếp còn Zn, Cd và Hg không phải là kim loại chuyển tiếp. Thật vậy kēm, catmi và thủy ngân khác với kim loại chuyển tiếp về một số tính chất. Ví dụ như chúng là kim loại mềm và dễ nóng chảy, về mặt hóa học Zn và Cd hoạt động hơn Cu và Ag là những nguyên tố đứng gần nhất ở trong dãy và cả ba nguyên tố không thể hiện hóa trị biến đổi. Nhưng kẽm, catmi và thủy ngân giống với kim loại chuyển tiếp ở chỗ có khả năng tạo nên những phức chất, nhất là với amoniac, amin, ion halogenua và ion xianua. Tuy nhiên ngay trong những phức chất với ion CN¯, khả năng tạo liên kết π giữa kim loại và phối tử vẫn kém hơn kim loại chuyển tiếp.

Hợp chất của ba kim loại đều độc, nhất là thủy ngân, cả kim loại và hợp chất đều hết sức độc. Khi hít phải hơi thủy ngân, hơi theo máu đi lên não và làm suy nhược hệ thần kinh. Hợp chất của thủy ngân vào cơ thể người gây rối loạn đường ruột và thận, gây viêm loét miệng và làm suy tim. Thảm họa xảy ra ở Irắc năm 1973 làm 450 người chết vì ăn phải lúa mì có dính bụi thuốc trừ sâu chứa hợp chất của Hg.

CÁC ĐƠN CHẤT

Tính chất lí học

Kẽm, catmi và thủy ngân là những kim loại màu trắng bạc nhưng ở trong không khí ẩm, chúng dần dần bị bao phủ bởi màng oxit nên mất ánh kim. Trong thiên nhiên, kẽm có 5 đồng vị bền, trong đó ⁶⁴Zn chiếm 50,9%, catmi có 8 đồng vị bền, trong đó ¹¹⁴Cd chiếm 28% và ¹¹²Cd chiếm 24,2%, thủy ngân có 7 đồng vị bền, trong đó ²⁰⁰Hg chiếm 23,3% và ²⁰²Hg chiếm 29,6%. Đặc biệt đồng vị bền ¹¹³Cd có tiết diện bắt nơtron rất lớn nên catmi kim loại được dùng làm thanh điều chính đòng nơtron trong lò phản ứng nguyên tử. Cả ba kim loại đều mềm và để nóng chảy, đặc biệt thủy ngân là chất lóng ở nhiệt độ thường. Là kim loại nặng ở trạng thái lỏng, thủy ngân được dùng trong nhiệt kế, áp kế, phù kế và bơm chân không cao. Đưới đây là một số hằng số vật lí quan trọng của kim loại (Bảng 25).

Bảng 25 Hằng số vật lí của kim loại nhóm HB

Kim Ioại (E)	Nanc., °C	Nđs., °C	Nhiệt thăng hoa, kJ/mol	Tỉ khối	Độ dẫn điện
Zn	419,5	906	140	7,13	16
Cd	321	7 67	112	8,63	13
Hg	-38,86	356,66	61	13,55	1

Nguyên nhân của tính dễ nóng chảy và tương đối dễ bay hơi của ba kim loại này là tương tác yếu giữa các nguyên tử trong kim loại, nhất là trong thủy ngân, gây nên bởi cấu hình tương đối bền d¹⁰ cản trở các electron đ tham gia vào liên kết kim loại. Thủy ngân dễ bay hơi nhất, hơi gồm những phân tử đơn nguyên tử, ở 20°C áp suất hơi của thủy ngân là 1,3.10³mmHg. Vì rất dễ nóng chảy, dễ bay hơi và thường tạo nên ion Hg_2^{2+} , có giả thiết cho rằng trong thủy ngân lỏng tồn tại những phân tử giả Hg_2 . Điều lạ là thủy ngân dễ tan trong dung môi có cực và dung môi không cực. Dung dịch của thủy ngân trong nước (khi không có không khí) ở 25°C chứa 6.10-8g Hg/l. Thủy ngân dễ bay hơi và hết sức độc nên cần đựng trong bình kín và để chỗ râm mát, khi sử dụng phải hết sức cẩn thận.

Kẽm, catmi và thủy ngân tạo nên rất nhiều hợp kim. Một hợp kim của kẽm quan trọng đối với thực tế là thau. Một lượng nhỏ Cd thêm vào đồng làm tăng độ bền nhưng không làm giảm độ dẫn điện của đồng nên hợp kim của đồng với catmi được dùng làm dây dẫn. Hợp kim của Cd có đặc điểm là mềm nên là vật liệu không thay thế được để chế các ố trục. Catmi chiếm đến 12,5% hợp kim dễ nóng chảy (75°C) gọi là hợp kim U đỏ (Wood là tên nhà vật lí Mỹ đã chế hợp kim đỏ. Để đùa cợt với những người trong nhà, ông đã làm những chiếc thìa con bằng hợp kim đỏ. Sẽ sợ hãi biết chừng nào khi thấy những thìa đó chảy ra trong nước trà nóng!).

Hợp kim của thủy ngân được gọi là hỗn hống (amalgam, tiếng Ả Rập, nghĩa là hợp kim). Tùy thuộc vào tỉ lệ của kim loại tan trong thủy ngân, hỗn hống ở dạng lỏng hoặc dạng rắn. Như đã biết từ xưa người ta đã dùng sự tạo thành hỗn hống để tách vàng, bạc ra khỏi đất đá. Sự tạo thành hỗn hống có thể đơn giản là quá trình hoà tan kim loại trong thủy ngân lỏng và có thể là tương tác mãnh liệt giữa kim loại và thủy ngân. Ví dụ như quá trình tạo hỗn hống của kim loại kiểm phát ra nhiệt và chớp sáng. Trong hỗn hống thường có những hợp chất giữa-kim loại với thành phần biến đổi tuỳ thuộc vào tỉ lệ giữa kim loại và thủy ngân. Ví dụ như vàng tạo nên những hợp chất Hg₃Au₂, HgAu₃, natri tạo nên 7 hợp chất, kali tạo nên 5 hợp chất, trong đó Hg₂K bền nhất và nóng chảy ở 269,7°C. Ở trong hỗn hống, các kim loại tỏ ra kém hoạt động hơn so với kim loại tự do. Bởi vậy trong phòng thí nghiệm người ta thường dùng hỗn hống natri và hỗn hống kẽm để làm chất khử trong dung dịch. Những hợp kim của những kim loại khổ nóng chảy, khổ được tạo nên bằng cách nấu chảy, thường được chế bằng cách trộn

hỗn hống của những cấu tử kim loại rồi đun nóng để thủy ngân thoát ra. Platin khó tạo hỗn hống với thủy ngân; mangan, sắt, coban và niken không tạo hỗn hống với thủy ngân. Thực tế người ta chuyên chở thủy ngân trong thùng sắt.

Tính chất hóa học

Hoạt tính hóa học giảm xuống theo thứ tự Zn-Cd-Hg: kẽm và catmi tương đối hoạt động còn thủy ngân khá trơ.

Trong không khí ẩm, kẽm và catmi bền ở nhiệt độ thường nhờ có màng oxit bảo vệ. Nhưng ở nhiệt độ cao, chúng cháy mãnh liệt tạo thành oxit, kẽm cháy cho ngọn lửa màu lam sáng chối trông ngoạn mục, catmi cháy cho ngọn lửa màu sẫm. Thực tế người ta dùng những lớp mạ kẽm và catmi để bảo vệ cho kim loại không bị rỉ. Tôn lá thường dùng để lợp nhà là sắt lá được mạ kẽm ở ngoài. Những chi tiết máy móc của ô tô, xe tăng, máy bay và tàu thủy, thường xuyên tiếp xúc với môi trường ăn mòn, được mạ bằng catmi. Lớp mạ catmi bền và đẹp hơn lớp mạ kẽm.

Thủy ngân không tác dụng với oxi ở nhiệt độ thường, nhưng tác dụng rõ rệt ở 300°C tạo thành HgO và ở 400°C oxit đó lại phân hủy thành nguyên tố. Chính khả năng của thủy ngân kết hợp được với oxi không khí rồi lại giải phóng khí oxi như vậy đã giúp ông Lavoazie và ông Pristli tìm ra nguyên tố oxi trước đây.

Cả ba nguyên tố tác dụng với halogen, lưu huỳnh và các nguyên tố không-kim loại khác như photpho, selen v.v... Đặc biệt tương tác của thủy ngân với lưu huỳnh và với iot xảy ra để dàng ở nhiệt độ thường có lẽ do trạng thái lỏng làm cho nó tiếp xúc tốt với các chất. Thực tế người ta dùng bột mịn của lưu huỳnh để thu gom những hạt thủy ngân bé nhỏ lọt vào khe bàn và khe sàn nhà khi rơi vãi thủy ngân. Lưu huỳnh kết hợp với thủy ngân tạo thành hợp chất bền HgS làm cho thủy ngân không thể bay hơi và gây độc đối với người. Ngoài ra còn có thể thu gom Hg bằng dung dịch FeCl₃ (2FeCl₃ + Hg = HgCl₂ + 2FeCl₂).

Ở nhiệt độ thường, kẽm và catmi bền với nước vì có màng oxit bảo vệ, ở nhiệt độ cao khử hơi nước biến thành oxit.

Ví dụ:

$$Z_{n} + H_{2}O$$
 = $Z_{n}O + H_{2}$

Có thế điện cực khá âm, kẽm và catmi tác dụng dễ dàng với axit không phải là chất oxi hóa giải phóng khí hiđro:

$$E + 2H_3O^+ + 2H_2O = {[E(H_2O)_4]^{2+} + H_2}$$

trong đó kẽm hoạt động hơn catmi. Tuy nhiên kẽm rất tinh khiết gần như không tan trong axit. Nguyên nhân là quá thể quá cao của hiđro ở trên kẽm (0,7V). Nhưng nếu buộc thanh kẽm với sợi dây Pt rồi thả vào dung dịch HCl chẳng hạn thì những bọt khí H_2 bay lên từ sợi dây Pt và kẽm tan dễ dàng. Sở dĩ như vậy là vì quá thể của hiđro trên dây Pt chỉ là 0,3V.

Thủy ngàn chỉ tan trong những axit có tính oxi hóa mạnh như HNO₃, H₂SO₄ đặc.

Ví du:

$$Hg + 4HNO_3 = Hg(NO_3)_2 + 2NO_2 + 2H_2O$$
 (dac)
 $6Hg + 8HNO_3 = 3Hg_2(NO_3)_2 + 2NO + 4H_2O$
 $(loang)$

Với những axit này, kẽm và catmi tổ ra hoạt động hơn, ví dụ kẽm có thể khử dung dịch HNO₃ rất loãng đến ion amoni:

$$4Zn + 10HNO_3 = 4Zn(NO_3)_2 + NH_4NO_3 + 3H_2O$$

Riêng kẽm có thể tan dễ dàng trong dung dịch kiểm giải phóng hiđro giống như nhôm:

$$Zn + 2H_2O + 2OH^- = [Zn(OH)_4]^{2-} + H_2$$

Chính vì phản ứng này mà Zn là chất khử rất mạnh trong môi trường kiềm cao, nó có thể khử được ion NO₃ thành khí NH₃ giống như Al, nhưng khác với Al, kẽm tan không chỉ trong dung dịch kiềm mạnh mà cả trong dung dịch NH₃:

$$Zn + 4NH_3 + 2H_2O = [Zn(NH_3)_4](OH)_2 + H_2$$

Catmi và thủy ngân không có khả năng này là vì catmi thể hiện yếu hơn khả năng tạo phức chất hiđroxo và vì Hg(OH)₂ không bền phân hủy ngay thành oxit.

Trạng thái thiên nhiên và phương pháp điều chế

Trong thiên nhiên, kẽm là nguyên tố tương đối phổ biến còn catmi và thủy ngân kém phổ biến hơn nhiều. Trữ lượng của chúng ở trong vỏ Trái Đất là 1,5.10⁻³, 7,6.10⁻⁶ và 7.10⁻⁷% tổng số nguyên tử (tương ứng). Những khoáng vật chính của kẽm là sphalerit (ZnS), calamin (ZnCO₃), của catmi là grenokit (CdS), khoáng vật này hiếm khi ở riêng và thường ở lẫn với khoáng vật của kẽm, và của thủy ngân là xinaba hay thần sa (HgS). Kẽm và catmi thường có trong những quặng đa kim cùng với chì và đồng. Kẽm còn có lượng đáng kể trong thực vật và động vật. Cơ thể con người chứa kẽm đến 0,001%. Kẽm có trong enzim cacbanhiđrazơ là chất xúc tác quá trình phân hủy của hiđrocacbonat ở trong máu và do đó đảm bảo tốc độ cần thiết của quá trình hô hấp và trao đổi khí. Kẽm có trong insulin là hocmon có vai trò điều chỉnh độ đường ở trong máu. Ngoài dạng hợp chất, thủy ngân còn ở dạng tự do có lẽ vì những hợp chất của nó đều kém bền dễ phân hủy thành kim loại. Vì vậy thủy ngân là một trong bảy kim loại đã biết từ thời cổ xưa và được coi là ứng với bảy hành tinh của Trái Đất: Au (Mặt Trời), Ag (Mặt Trăng), Hg (sao Thủy), Cu (sao Kim), Sn (sao Mộc), Fe (sao Hỏa) và Pb (sao Thổ).

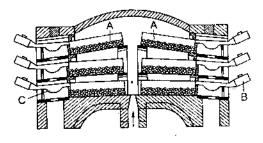
Trên thế giới, những nước có nhiều mỏ kẽm là Canađa, Australia, Trung Quốc, Pêru; có nhiều mỏ thủy ngân là Tây Ban Nha, Nam Tư, Nga, Trung Quốc, Italia, Canađa, Mêxico và Mỹ.

Nước ta có các mỏ kẽm-chì ở Ngân Sơn, Chợ Điền, Tú Lệ, Lang Hít (Thái Nguyên) và Đức Bố (Quảng Nam). Đây là những mỏ đa kim bao gồm chủ yếu quặng sunfua của các kim loại Zn, Pb, Cu, Cd và Ag. Các tỉnh Sơn La, Cao Bằng, Bắc Cạn, Thái Nguyên và Ninh Bình có các điểm quặng xinaba.

Hợp kim và hợp chất của kẽm dã được biết từ thời xa xưa còn kẽm kim loại được biết muộn hơn nhiều. Có lẽ nguyên nhân là việc luyện kẽm đòi hỏi nhiệt độ cao mà kẽm đã bay hơi ở dưới nhiệt độ đó. Người cổ Ấn Độ và Trung Hoa đã chế được kẽm thoi bằng cách ngưng tụ hơi kẽm. Ở châu Âu, kẽm kim loại mới được biết vào thời Trung Cổ, mãi đến thế kỉ XVII và XVIII người ta mới sản xuất được kẽm kim loại. Nguồn gốc của tên La Tình zincum của nguyên tố kẽm chưa được biết rõ ràng.

Catmi đã được phát hiện vào năm 1817 bởi nhà khoa học người Đức Stromâye (F. Stromeyer, 1778-1835). Khi điều chế ZnO bằng cách nhiệt phân ZnCO₃, ông ngạc nhiên nhận thấy màu vàng của kẽm oxit nóng thu được không biến mất khi để nguội (trước đó người ta đã biết ZnO có màu trắng, khi đun nóng có màu vàng và khi để nguội trở lại có màu trắng). Khi hòa tan oxit đó vào axit rồi sục khí H₂S qua dung dịch, ông thấy xuất hiện kết tủa vàng. Đó là sunfua của một kim loại mới. Ông đặt tên nguyên tố là cadmium (Cd) xuất phát từ tiếng La Tinh cadmia là tên gọi của quặng kẽm thời bấy giờ.

Các nhà giả kim thuật lấy tên của hành tinh Mercury (sao Thủy) đặt tên cho nguyên tố thủy ngân. Tên gọi mercury đó ngày nay vẫn được dùng trong tiếng Anh, Ý, Pháp và Tây ban nha. Tên La Tinh của nguyên tố thủy ngân là hydragyrum (Hg) có nghĩa là "bạc lỏng".


Gần một nưa lượng kẽm và catmi sản xuất hàng năm trên thế giới được dùng để mạ sắt thép, phần còn lại dùng để chế hợp kim, làm pin khô và ặc quy. Những năm gần đây, những kết cấu khởi động để phóng tên lửa cũng được mạ kẽm. Nhiệt của luồng khí phản lực sinh ra khi phóng tên lửa được hấp thụ một phần do lớp mạ kẽm đó bay hơi và nhờ đó kết cấu khởi động được bảo vệ.

Một trong những nguyên liệu chính dùng để luyện kẽm là quặng sphalerit. Tinh quặng sphalerit thu được bằng phương pháp tuyển nổi chứa đến 48 - 58% Zn. Tinh quặng được đốt trong lò nhiều tầng ở nhiệt độ 700° C, quặng sunfua chuyển thành oxit và khí SO_2 :

$$2ZnS + 3O_2 = 2ZnO + 2SO_2$$

Khí SO₂ được dùng để sản xuất H₂SO₄ còn ZnO thô được chế hoá theo một trong hai phương pháp: nhiệt luyện và thủy luyện.

 - Quá trình nhiệt luyện được thực hiện ở trong lò hằm (Hình 67).

Hình 67. Sơ đồ lò luyên kẽm

Nạp phối liệu gồm ZnO thô và than bột vào những lò chưng A làm bằng gạch samôt. Những lò này được đặt trong lò hằm lớn và được đốt nóng đến 1200-1350°C bằng khí đốt, trong đó kẽm oxit bị khứ thành kẽm kim loại:

$$ZnO + C = Zn + CO$$

Kẽm lỏng tập trung vào những thiết bị ngưng tụ B được nối với lò chưng và giữ ở nhiệt độ 450°C còn kẽm hơi bay lên cùng với khí CO được ngưng tụ thành kẽm bụi (kẽm hạt rất nhỏ) ở trong những ống C làm bằng thép lá và được làm nguội bằng không khí. Kẽm bụi chứa ~90% Zn và những tạp chất như Cd, Pb, Fe, Cu, ZnO, SiO_{2...}

- Trong quá trình thủy luyện, người ta hòa tan ZnO thô, thu được sau khi đốt quặng, vào dung dịch H₂SO₄ loãng và loại tạp chất có trong dung dịch ZnSO₄. Điện phân dung dịch ZnSO₄ đã được tinh chế và đã thêm H₂SO₄, ở trong thùng điện phân làm bằng gỗ hoặc xi mãng, với cực đương bằng chì và cực âm bằng nhôm tinh khiết. Do quá thế rất lớn của hiđro trên kẽm, khí H₂ không sinh ra ở cực âm mà kēm kim loại kết tủa:

$$2ZnSO_4 + 2H_2O$$
 $\xrightarrow{\text{dòng điện}}$ $2Zn + O_2 + 2H_2SO_4$

Kẽm điện phân có độ tinh khiết 99,99% và bền với axit sunfuric có ở trong thùng điện phân.

Sản phẩm kẽm thô của quá trình nhiệt luyện, khi cần thiết, có thể được tinh chế theo phương pháp điện phân trên đây nhưng với cực dương là thỏi kẽm thô.

Catmi thường có thể tách ra khi tinh chế dung dịch ZnSO₄ thu được trong thủy luyện kẽm. Dung dịch đó có thể chứa các tạp chất như FeSO₄, CuSO₄ và CdSO₄. Để loại bỏ muối sắt, người ta cho thêm vào dung địch đó MnO₂ rồi CaCO₃:

$$FeSO_4 + MnO_2 + 2H_2O = FeOHSO_4 + Mn(OH)_3$$

 $FeOHSO_4 + CaCO_3 + H_2O = Fe(OH)_3 + CaSO_4 + CO_2$

Dung dịch, sau khi đã lọc kết tủa, còn chứa $CuSO_4$ và $CdSO_4$. Khi thêm bột kẽm vào dung dịch đó, đồng và catmi kim loại sẽ kết tủa. Hoà tan kết tủa đó vào dung dịch H_2SO_4 loãng và cho thêm kẽm bụi vào dung dịch $CdSO_4$ thu được để catmi kim loại kết tủa:

$$Zn + CdSO_4 = Cd + ZnSO_4$$

Catmi kim loại được tinh chế bằng phương pháp điện phân dung dịch CdSO₄ với cực dương là catmi thô hoặc bằng cách chưng cất phân đoạn kim loại thô ở trong chân không.

Thủy ngân được điều chế bằng cách đun nóng tinh quặng xinaba trong dòng không khí ở 700-800°C hoặc đun nóng tính quặng với vôi sống hay với mạt sắt ở 600-700°C:

$$HgS + O_2 = Hg + SO_2$$

 $4HgS + 4CaO = 4Hg + CaSO_4 + 3CaS$
 $HgS + Fe = Hg + FeS$

Hơi thủy ngân được ngưng tụ trong thiết bị sinh hàn làm bằng thép không rỉ. Người ta tinh chế thủy ngân kim loại bằng cách rửa với dung dịch HNO_3 10% rồi chưng cất phân đoạn ở trong chân không.

HỢP CHẤT CỦA Zn(II) VÀ Cd(II)

Oxit EO

Kẽm oxit (ZnO) và catmi oxit (CdO) là chất khó nóng chảy (nđnc. của ZnO và CdO là 1950° và 1813°C tương ứng), có thể thăng hoa không phân hủy khi đun nóng, hơi của chúng rất độc. ZnO có màu trắng ở nhiệt độ thường và có màu vàng khi đun nóng, CdO có các màu từ vàng đến nâu gần như đen tùy thuộc quá trình chế hóa nhiệt. Những màu khác nhau đó của chúng có liên quan đến kiểu khuyết trong mạng lưới tinh thể.

Tinh thể ZnO có kiến trúc kiểu vuazit (ZnS) trong đó Zn có số phối trí 4 còn CdO có kiến trúc kiểu NaCl trong đó Cd có số phối trí 6. Như vậy liên kết Cd-O có tính chất ion hơn liên kết Zn-O:

Cả hai oxit không tan trong nước, tan trong dung dịch axit. ZnO còn tan trong dung dịch kiểm và CdO chỉ tan trong kiểm nóng chảy:

Ví dụ:

$$CdO + 2KOH = K_2CdO_2 + H_2O$$

(nong chảy) (kali catmiat)

Phản ứng tương tự cũng xảy ra với ZnO:

$$ZnO + 2KOH = K_2ZnO_2 + H_2O$$

(nóng chảy) (kali zincat)

Trong thiên nhiên, ZnO và CdO tồn tại dưới dạng khoáng vật zinkit và monteponit tương ứng. Kẽm oxit được dùng làm bột màu trắng cho sơn, thường gọi là *trắng kẽm*, và làm chất độn trong cao su.

Cả hai oxit có thể điều chế bằng cách đốt cháy kim loại trong không khí hoặc nhiệt phân hiđroxit hay các muối cacbonat, nitrat.

Ví du:

$$Zn(OH)_2 \xrightarrow{100-250^{\circ}C} ZnO + H_2O$$

$$Cd(OH)_2 \xrightarrow{170-300^{\circ}C} CdO + H_2O$$

Hidroxit E(OH),

Các hiđroxit $Zn(OH)_2$ và $Cd(OH)_2$ là kết tủa nhầy, rất ít tan trong nước và có màu trắng.

Kẽm hidroxit là chất lưỡng tính điển hình: tan trong dung dịch axit tạo thành muối Zn(II) và tan trong dung dịch kiểm tạo thành phức chất hidroxozincat. Tính chất đó có thể được biểu diễn bằng sơ đồ:

$$[Zn(H_2O)_4]^{2+} \qquad \frac{OH^-}{H_3O^+} \quad Zn(OH)_2 \quad \frac{OH^-}{H_3O^+} \quad [Zn(OH)_4]^{2^-} \ , \label{eq:condition}$$

Tính lưỡng tính đó của hiđroxit cộng với thế điện cực khá âm của kim loại giải thích tính dễ tan của Zn trong dung dịch kiềm giải phóng khí hiđro.

Catmi hidroxit không thể hiện rõ tính lưỡng tính: tan trong dung dịch axit, không tan trong dung dịch kiểm mà chỉ tan trong kiểm nóng chảy.

Cả hai hiđroxit tan trong dung dịch NH3 tạo thành amoniacat:

$$E(OH)_2 + 4NH_3 = [E(NH_3)_4](OH)_2$$

Các hidroxit này được tạo nên khi dung dịch muối của chúng tác dụng với kiềm.

Muối của Zn(II) và Cd(II)

Các muối halogenua (trừ florua), nitrat, sunfat, peclorat và axetat của Zn(II) và Cd(II) dễ tan trong nước còn các muối sunfua, cacbonat, orthophotphat và muối bazơ ít tan. Những muối tan khi kết tinh từ dung dịch nước thường ở dạng hiđrat. Ví dụ như $ZnSO_4.7H_2O$, $Zn(NO_3)_2.6H_2O$, $Cd(NO_3)_2.4H_2O$, $CdCl_2.H_2O$ v.v... Trong dung dịch nước, muối kẽm thủy phân mạnh hơn muối catmi.

Đa số các muối đơn gián không có màu, trừ ZnSe có màu vàng, ZnTe màu đỏ, CdS màu vàng, Cd₂SCl₂ màu da cam và CdTe màu nâu.

Ion Zn^{2+} và ion Cd^{2+} giống với ion Mg^{2+} , nhiều muối của chúng đồng hình với nhau. Ví dụ như $ZnSO_4.7H_2O$ và $MgSO_4.7H_2O$, $M_2SO_4.ZnSO_4.6H_2O$, $M_2SO_4.CdSO_4.6H_2O$ và $M_2SO_4.MgSO_4.6H_2O$ đồng hình với nhau (M= kim loại kiểm).

Ion Zn^{2+} và ion Cd^{2+} tạo nên nhiều phức chất, tuy nhiên khá năng tạo phức của chúng kém hơn đồng và bạc. Những ion phức thường gặp là $[ZnX_4]^{2-}$, $[CdX_4]^{2-}$ (trong đó $X=Cl^-$, Br_- , I^- và CN^-), $[Zn(NH_3)_4]^{2+}$, $[Cd(NH_3)_4]^{2+}$, $[Zn(NH_3)_6]^{2+}$ và $[Cd(NH_3)_6]^{2+}$.

Đihalogenua EX₂. Các đihalogenua của Zn và Cd là chất ở dạng tinh thể màu trắng, có nhiệt độ nóng chảy và nhiệt độ sôi khá cao:

<u>.</u>	ZnF ₂	ZnCl ₂	ZnBr ₂	ZnI ₂	CdF_2	CdCl ₂	CdBr ₂	CdI_2
Nđnc.,°C	872	275	394	446	1100	868	568	387
Nds., °C	1502	756	697	thăng hoa	1747	980	1136	thäng hoa

 ZnF_2 có kiến trúc tinh thể kiểu rutin và CdF_2 có kiến trúc tinh thể kiểu florit. Liên kết M–X trong các florua đó là liên kết ion còn trong các đihalogenua khác có bản chất cộng hóa trị. Bởi vậy ZnF_2 và CdF_2 có nhiệt độ nóng cháy và nhiệt độ sôi cao nhất trong các đihalogenua này. Tính ít tan của chúng có liên quan đến năng lượng mạng lưới cao của tinh thể. Các đihalogenua khác dễ tan trong nước và cả trong ete, rượu và axeton. Trong nước, kẽm đihalogenua phân li mạnh hơn catmi đihalogenua và cũng thủy phân mạnh hơn. Những đihalogenua dễ tan này có thể kết hợp với halogenua kim loại kiểm tạo thành ion phức $[EX_4]^{2-}$ (ở đây $X = Cl^-$, Br^- và I^-) trong đó $[CdX_4]^{2-}$ rất bền hơn $[ZnX_4]^{2-}$ trong khi $[Cd(NH_3)_4]^{2+}$ kém bền hơn $[Zn(NH_3)_4]^{2+}$.

Trong các đihalogenua EX2, kẽm clorua được dùng nhiều trong thực tế.

Kẽm clorua (ZnCl₂) là chất ở dạng tinh thể lập phương, trong đó ZnCl₂ có cấu hình tứ diện với Cl là cầu nối. Ở trạng thái hơi phân tử ZnCl₂ có cấu hình đường thẳng. Muối khan để chảy rữa ở trong không khí và tan rất nhiều trong nước, 100g nước ở 20°C có thể hòa tan 367g ZnCl₂. Đặc biệt ZnCl₂ khan có thể kết tinh từ dung dịch nước ở trên 25°C. Như vậy tuy Zn(OH)₂ có tính lưỡng tính, ZnCl₂ có thể tạo nên khi đun nóng nhẹ hiđrat của nó trong khi các muối khan MgCl₂, CaCl₂ và MnCl₂, như đã biết, không thể sinh ra khi đun nóng hiđrat tương ứng mặc dù các hiđroxit tương ứng không phải là chất lưỡng tính. Có thể giải thích điều đó nếu chú ý đến khuynh hướng tạo nên liên kết cộng hóa trị của kẽm. Có lẽ rằng vỏ 3d¹⁰ làm cho ion Zn²⁺ liên kết dễ với Cl⁻ hơn với oxi của H₂O. Bởi vậy, trong dung dịch ZnCl₂ đặc ở trong nước xảy ra sự cạnh tranh giữa ion Cl⁻ và phân tử H₂O làm cho Cl⁻ thay thế H₂O ở trong cầu nội. Thật vậy trong dung dịch ZnCl₂ loãng, Zn(II) tồn tại chủ yếu dưới đạng ion [Zn(H₂O)₆]²⁺ còn trong dung dịch đặc, dưới dạng ion [ZnCl₄(H₂O)₂]²⁻.

Dung dịch $ZnCl_2$ đặc khi trộn với bột ZnO tạo nên oxoclorua có thành phần Zn_2OCl_2 :

$$ZnCl_2 + ZnO = Zn_2OCl_2$$

Kẽm oxoclorua là một polime vô cơ không tan trong nước, đông cứng nhanh sau khi được tạo thành nên được gọi là *xi mặng kẽm* và thường dùng để trám răng. Hợp chất này cũng được tạo nên khi đun nóng muối clorua bazơ:

$$2ZnOHCl = Zn_2OCl_2 + H_2O$$

Dung dịch ZnCl2 đặc thể hiện rõ phản ứng axit do tạo thành axit phức:

$$ZnCl_2 + 2 H_2O \implies H_2[Zn(OH)_2Cl_2]$$

Bởi vậy, dung dịch ZnCl2 đặc thường được dùng để đánh sạch sắt thép khi hàn:

$$FeO + H2[Zn(OH)2Cl2] = Fe[Zn(OH)2Cl2] + H2O$$

Khi hàn, nước bay hơi còn bề mặt sắt thép được phủ lớp muối trên ở trạng thái nóng chảy cho nên không bị oxi không khí oxi hóa và nhờ đó mối hàn được vững chắc. Ngoài những công dụng vừa trình bày trên đây, ZnCl₂ còn được dùng vào việc in hoa trên vải, tẩm gỗ để gỗ khỏi bị mục nát và chế giấy da đề.

Kẽm clorua khan có thể điều chế bằng tác dụng của kẽm hạt với khí clo ở 400°C còn hidrat có thể điều chế bằng tác dụng của kẽm hay oxit, hidroxit và cacbonat của kẽm với dung dịch HCl loãng.

Hợp chất cơ kim của Zn và Cd

Hợp chất $c\sigma$ kẽm có ý nghĩa quan trọng về mặt lịch sử. Đietyl kẽm $(C_2H_5)_2$ Zn là hợp chất $c\sigma$ kim đầu tiên được nhà hóa học người Anh là Franclen (E.Frankland, 1825-1899) điều chế vào năm 1849 theo phản ứng:

$$2C_2H_5I + 2Zn \text{ (hợp kim với Cu)} = (C_2H_5)_2Zn + ZnI_2$$

Phát minh của Franclen đã góp phần đáng kể vào sự phát triển những quan điểm hiện đai về bản chất của liên kết hóa học.

Những hợp chất cơ kẽm và cơ catmi cũng quan trọng đối với thực tế vì khả năng dễ phản ứng với những nhóm chức nhất định của hợp chất hữu cơ cho phép thực hiện được những phản ứng tổng hợp độc đáo.

Ngày nay người ta đã biết được những hợp chất cơ kẽm và cơ catmi có công thức tổng quát là RZnX, R₂Zn và R₂Cd, trong đó R là gốc hiđrocacbon và X là halogen.

HỢP CHẤT CỦA Hg(II)

Như đã biết, khác với Zn và Cd, thủy ngân tạo nên hai loại hợp chất, trong đó nó có số oxi hóa +2 và +1. Xác suất tạo thành hai trạng thái oxi hóa đó gần tương đương với nhau về mặt nhiệt động học, trong đó trạng thái oxi hóa +2 thường gạp hơn và bền hơn. Bởi vậy chúng ta xét trước hợp chất của Hg(II) để tiện so sánh với những hợp chất của Zn và Cd vừa xét trên đây và trên cơ sở đó xét đến những hợp chất của Hg(I).

Thủy ngân(II) oxit

Thủy ngân(II) oxit (HgO) là chất ở dạng tinh thể tà phương, hạt rất nhỏ có màu vàng.

hạt to hơn có màu đỏ. Nó được cấu tạo nên từ những mạch dài, gãy và phẳng liên kết yếu với nhau.

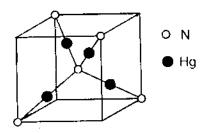
Trong khi ZnO và CdO có thể thăng hoa không phân hủy ở nhiệt độ cao, HgO phân hủy ở trên 400°C. Điều này phù hợp với sự biến đổi nhiệt tạo thành của các oxit đó:

	ZnO	CdO	HgO
ΔH_n^o , kJ/mol	-318	-226	-58,5

Bởi vậy ở $\sim 100^{\circ}$ C, HgO bị $\rm H_2$ khủ dễ dàng thành Hg và ở nhiệt độ thường HgO dễ tác dụng với khí clo hay nước clo tạo nên kết tủa oxoclorua màu đỏ-nâu:

$$2HgO + 2Cl_2 = Hg_2OCl_2 + Cl_2O$$

 $2HgO + 2Cl_2 + H_2O = Hg_2OCl_2 + 2HOCl$


(thủy ngân oxoclorua $\mathrm{Hg_2OCl_2}$ thường được biểu diễn dưới dạng hợp chất kép $\mathrm{HgO.HgCl_2}$).

Thủy ngân(II) oxit tan rất ít trong nước, tan dễ trong dung dịch axit nhưng không tan trong dung dịch kiềm mạnh. Tuy nhiên khi tác dụng với dung dịch NH₃, HgO không tạo nên amoniacat như ZnO mà tạo nên hợp chất ít tan màu vàng gọi là bazo Milon:

$$2HgO + NH_3 + H_2O = Hg_2NOH.2H_2O$$

Bazơ Milon Hg_2NOH , $2H_2O$ là một trong những hợp chất mới của Hg với N, trong đó ion Hg_2N^+ có mạng lưới tinh thể kiểu cristobalit (Hình 68) còn ion OH^- và phân tử H_2O được giữ ở trong lỗ trống của mạng lưới đó bằng liên kết ion, liên kết hiđro và lực phân tán.

Bazơ Milon phản ứng với axit tạo nên muối có công thức chung là $Hg_2NX.H_2O$, trong đó $X = NO_3^-$, ClO_4^- , Cl^- , Br^- , $I^-v.v...$ Sự tạo thành kết tủa nâu $Hg_2NI.H_2O$ là phản ứng rất nhạy để phát hiện NH_3 hoặc NH_4^+ bằng thuốc thử Nesle là dung dịch $K_3[HgI_4]$ trong kiềm:

Hình 68. Mạng lưới Hg₂N⁺ trong bazơ Milon

$$2 K_{2}[HgI_{4}] + 3KOH + NH_{3} = Hg_{2}NI.H_{2}O + 7KI + 2H_{2}O$$

Trong thiên nhiên, HgO tồn tại ở dạng khoáng vật hiếm montroidit. HgO dùng để điều chế hợp chất khác của thủy ngân, chế sơn vỏ tàu biển, thuốc mỡ và pin thủy ngân. Pin thủy ngân gồm có cực âm làm bằng hỗn hống kẽm, cực dương là bột nhão của HgO trộn với than

và chất điện li là bột nhão của ZnO trộn với KOH. Trong pin xảy ra phản ứng:

$$Zn + HgO = ZnO + Hg$$

Pin thủy ngân được làm ở dạng cúc dùng cho máy nghe, đồng hồ đeo tay. Pin có thế hiệu 1,34V.

Dạng vàng của HgO được điều chế khi cho thêm kiềm vào dung dịch muối Hg(II), dạng đỏ được điều chế bằng cách đun nóng Hg trong không khí ở 350°C hoặc nhiệt phân cẩn thân muối nitrat.

Ví du:

$$Hg(NO_3)_2 + 2KOH = HgO + 2KNO_3 + H_2O$$

 $2Hg(NO_3)_2 = 2HgO + 4NO_2 + O_2$

Thủy ngân(II) hiđroxit

Khi thêm kiềm vào dung dịch muối Hg(II), chỉ thu được HgO chứ không tách ra được $Hg(OH)_2$. Tuy nhiên dựa vào độ tan rất bế của HgO (10^{-3} - 10^{-4} mol/l) trong nước và tính thủy phân mạnh của muối Hg(II) người ta thường coi $Hg(OH)_2$ là một bazơ rất yếu.

Muối của Hg(II)

Các muối nitrat, peclorat, sunfat và axetat của Hg(II) dễ tan trong nước còn các muối sunfua, orthophotphat và muối bazơ ít tan. Khi tan trong nước, một số muối Hg(II) phân li rất • kém, nhất là Hg(CN)₂ được coi là chất không điện li, các muối còn lại phân li bình thường và bi thủy phân mạnh.

Đa số muối đơn của Hg(II) không có màu trừ HgS có màu đen hoặc đỏ, HgI_2 có màu vàng hoặc đỏ.

Thủy ngân là một kim loại tạo nên nhiều hợp chất rất kém bền và dễ phân hủy nổ như HgC_2 , Hg_3N_2 , $Hg(N_3)_2$ và $Hg(OCN)_2$. Ví dụ như HgC_2 được tạo nên khi C_2H_2 tác dụng với dung dịch $HgCl_2$. Nó có kiến trúc tinh thể giống CaC_2 nhưng khi tác dụng với axit không tạo nên C_3H_2 mà CH_3CHO :

$$HgC_2 + 2HCl + H_2O = HgCl_2 + CH_3CHO$$

Sơ đổ thế oxi hóa - khử:

$$Hg^{2}$$
 0.920 Hg_{2}^{2} 0.789 Hg^{8}

cho thấy muối Hg(II) có khả năng oxi hóa, khi tác đụng với những chất khử muối Hg(II) mới đầu biến thành muối Hg(I) rồi sau đó biến thành Hg(0). Ngay khi tác dụng với thủy ngân kim

loại, muối Hg(II) tạo thành muối Hg(I).

Ví dụ:

$$Hg(NO_3)_2 + Hg = Hg_2(NO_3)_2$$

Bởi vậy khi tác dụng với axit nitric hay axit sunfuric đặc, nếu có dư thủy ngân thì sản phẩm thu được không phải là muối Hg(II) mà là muối của Hg_2^{2+} .

Ion Hg^{2+} có khả năng tạo nên nhiều phức chất, trong đó thủy ngân có những số phối trí đặc trưng là 2 và 4. Những phức chất này bền hơn những phức chất tương ứng của Zn^{2+} và Cd^{2+} .

Thủy ngân(II) halogenua

Thủy ngan(II) halogenua (HgX_2) là chất dạng tinh thể không màu, trừ HgI_2 có màu đỏ. Dưới đây là một số tính chất vật lí quan trọng của chúng:

•	HgF ₂	HgCl ₂	HgBr ₂	HgI ₂
Nhiệt độ nóng chảy, °C	645	280	238	257
Nhiệt độ sởi, °C	650	303	318	351
Độ tan ở 20°C, g/100g nước	thủy phân	6,59	0,55	0,004

Thủy ngân(II) florua là hợp chất ion, có kiến trúc mạng lưới kiểu florit (CaF_2). Nó có nhiệt độ nóng chảy và nhiệt độ sôi cao nhất trong các halogenua HgX_2 . Nó bị thủy phân gần như hoàn toàn ngay trong nước lạnh. Điều này cho thấy nó là một muối ion được tạo nên bởi một axit yếu và bazơ rất yếu.

Ba halogenua còn lại thể hiện rõ đặc tính cộng hoá trị, tinh thể HgCl_2 có mạng lưới phân tử, các tinh thể HgBr_2 và HgI_2 có mạng lưới lớp. Chúng có nhiệt độ nóng chảy và nhiệt độ sôi thấp so với HgF_2 , tan trong một số dung môi hữu cơ nhiều hơn ở trong nước. Ở trong nước, ba halogenua này phân li rất kém (\sim 1%) nên bị thủy phân không đáng kể. Ở trạng thái hơi và trong dung dịch, chúng đều tồn tại ở dạng phân tử.

. Tất cả các halogenua HgX_2 có thể điều chế bằng tác dụng trực tiếp của các đơn chất, trong đó $HgCl_2$ là hoá chất được sử dụng rộng rãi nhất.

Thủy ngân(II) clorua (HgCl₂) là hợp chất thuần tuý cộng hoá trị, kết tinh ở dạng tinh thể nhỏ hệ tà phương, dễ nóng chảy, dễ bay hơi và có thể thăng hoa. Nó rất bền trong không khí, rất độc, tan trong nước, rượu, ete, axeton, benzen và clorofom. Độ tan của nó ở trong nước biến đổi nhiều theo nhiệt độ, 100g nước hoà tan 6,6g ở 20°C và 54g ở 100°C.

Dung dịch nước của HgCl₂ có phản ứng axit rất yếu vì bị thủy phân:

$$HgCl_2 + H_2O \Longrightarrow HgOHCI + HCI$$

Là chất rất kém điện li, HgCl₂ được tạo nên khi đun nóng HgO trong dụng dịch NaCl:

$$HgO + 2NaCl + H_2O = HgCl_2 + 2NaOH$$

nhưng lại có thể tác dụng với dung dịch axit xianhiđric giải phóng axit clohiđric nhờ tạo thành chất không điện li Hg(CN)₂:

$$2HCN + HgCl_2 = Hg(CN)_2 + 2HCI$$

Phản ứng này được dùng để định lượng axit xianhiđric.

Khi tác dụng với những chất khử, $HgCl_2$ có thể tạo $nen Hg_2Cl_2$ hay thủy ngân kim loại. Ví du:

$$HgCl_2 + SO_2 + 2H_2O = Hg + H_2SO_4 + 2HCl$$

 $2HgCl_2 + SnCl_2 = Hg_2Cl_2 + SnCl_4$
 $2HgCl_2 + H_2C_2O_4 = Hg_2Cl_2 + 2HCl + 2CO_2$

Khác với ZnCl₂ và CdCl₂, khi tác dụng với dung dịch NH₃, thủy ngân(II) clorua không tạo nên aminoacat mà tạo nên amidoclorua là hợp chất ít tan, có màu trắng và phân hủy trước khi nóng chảy:

$$HgCl_2 + 2NH_3 = HgNH_2CI + NH_4CI$$

Amoniacat chỉ được tạo nên trong dung dịch NH₃ đặc và có dư NH₄Cl:

$$HgCl_2 + 2NH_3 = [Hg(NH_3)_2]Cl_2$$

Amoniacat này là hợp chất ít tan, có màu trắng và có thể nóng chảy không phân hủy.

Khi đun sôi dung dịch ${\rm HgCl_2}$ với ${\rm HgO}$, tùy thuộc vào tỉ lệ của các chất phán ứng, người ta có thể kết tinh được những oxoclorua có các thành phần: ${\rm HgO.HgCl_2}$, ${\rm 2HgO.HgCl_2}$, ${\rm 3HgO.HgCl_2}$...

Thủy ngân(II) clorua có thể được điều chế bằng cách đun nóng hỗn hợp HgSO₄và NaCl ở 300°C hoặc hoà tan HgO hay HgSO₄ trong axit clohiđric hoặc hòa tan Hg trong cường thủy:

$$HgSO_4 + 2NaCl$$
 = $HgCl_2 + Na_2SO_4$
 $HgO + 2HCl$ = $HgCl_2 + H_2O$
 $HgSO_4 + 2HCl$ = $HgCl_2 + H_2SO_4$
 $3Hg + 6HCl + 2HNO_3$ = $3HgCl_2 + 2NO + 4H_2O$

Thủy ngân(II) sunfua

Thủy ngân(II) sunfua (HgS) là chất dạng tinh thể có màu đỏ và màu đen. Tinh thể dạng đó có kiến trúc kiểu vuazit, dạng đen có kiến trúc kiểu sphalerit và nóng chảy ở 820°C. Trong hai dạng tinh thể đó, dạng đỏ bền hơn. Khi đun nóng ở 344°C đạng đen chuyển sang dạng đỏ. Dang đỏ có thể thăng hoa ở 559°C.

Thủy ngân(II) sunfua tan rất ít trong nước và tan ít hơn nhiều so với ZnS và CdS cùng là những chất ít tan. Tích số tan của ZnS,CdS và HgS là 10^{-24} , 10^{-28} và 10^{-53} tương ứng. Bởi vậy, các sunfua này tan khác nhau trong axit: ZnS tan trong dung dịch axit loãng, CdS tan trong dung dịch axit khá đặc, còn HgS tan rất chậm trong dung dịch axit đặc kể cả HNO₃ và chỉ tan dễ khi đun nóng với cường thủy.

$$3HgS + 8HNO_3 + 6HCl = 3HgCl_2 + 3H_2SO_4 + 8NO + 4H_2O$$

Sự tăng màu và sự giảm độ tan trong nhóm ZnS-CdS-HgS có nguyên nhân là cation M^{2+} với vỏ 18 electron có bán kính tăng lên nên càng dễ bị cực hóa bởi anion S^{2-} và nhờ đó hiệu ứng cực hóa thêm của cation M^{2+} đối với S^{2-} tăng lên.

Khác với ZnS và CdS, thủy ngân(II) sunfua tan trong dung dịch đặc của sunfua kim loại kiểm tạo nên phức chất tan $M_2[HgS_2]$ có màu vàng (M=Na,K):

$$HgS + K_2S = K_2[HgS_2]$$
(kali thiomecurat)

Thủy ngân(II) sunfua dạng đỏ tồn tại trong thiên nhiên dưới dạng khoáng vật xinaba có màu đỏ. Dạng đen của HgS có thể điều chế khi nghiền lưu huỳnh với thủy ngân kim loại hoặc khi sục khí H_2S qua dung dịch muối Hg(II).

Ví du:

$$HgCl_2 + H_2S = HgS + 2HCl$$

Dạng đỏ của HgS được điều chế bằng cách đun nóng dạng đen hoặc cho thăng hoa hỗn hợp gồm lưu huỳnh và Hg (hay HgO) ở 600°C trong luồng khí nitơ.

Phức chất của Hg(II)

Ion Hg^{2+} tạo nên nhiều phức chất bền. Liên kết Hg-phối từ ở trong tất cá các phức chất, nhất là phức chất với số phối trí 2, là liên kết cộng hoá trị. Bền nhất là những phức chất được tạo nên với phối từ chứa halogen, cacbon, nito, photpho, lưu huỳnh. Những phức chất này của Hg(II) luôn luôn bền hơn những phức chất tương ứng của Zn(II) và Cd(II). Để sáng tỏ, chúng ta xét hằng số bền (Bảng 26) của những phức chất kiếu $[EX_4]^n$, trong đó E = Zn, Cd và Hg, $X = Cl^-$, Br^- , I^- , CN^- , SCN^- và NH_3 , n = 2- và 2+.

Bảng 26 Hằng số bền của phức chất [EX₄]ⁿ

Phức		Hằng số bền, K _b							
chất	Cl ⁻	Br	Г	CN"	SCN	NH_3			
$[ZnX_4]^n$	1	0,10	4,5.10-3	7,69.1016	20	5,0.108			
$[CdX_4]^n$	$1,1.10^2$	5.10 ³	1,25.10 ⁶	1,29.1017	2,5.10 ²	3,36.10 ⁶			
$[HgX_4]^n$	1,66.10 ¹⁵	1,0.1021	6,67.10 ²⁹	9,33.1038	1,69.10 ²	_			

Những phức chất của Hg(II) được dùng trong hóa học phân tích là $K_2[HgI_4]$ và $(NH_4)_2[Hg(SCN)_4]$.

Muối phức kali tetraiodomecurat $K_2[HgI_4]$ tan trong nước, có màu vàng nhạt, được tạo nên khi hòa tan kết tủa đỏ HgI_2 trong dung dịch KI:

$$Hg(NO_3)_2 + 2KI = HgI_2 + 2KNO_3$$

 $HgI_2 + 2KI = K_2[HgI_4]$

Thuốc thử Nesle (tên nhà hóa học người Đức J. Nessler, 1827-1905, năm 1868 ông đã dùng thuốc thử này để định tính và định lượng tạp chất NH_3 và muối amoni ở trong các chất) là dung dịch của $K_2[HgI_4]$ trong KOH.

Nhờ sự tạo thành phức chất $[HgI_4]^{2-}$ khá bển, HgO có thể tan trong dung dịch KI khi đun nóng:

$$HgO + 4KI + H_2O = K_2[HgI_4] + 2KOH$$

Muối phức amoni tetratioxianatomecurat (NH₄)₂[Hg(SCN)₄] tạo nên khi hoà tan kết tủa trắng Hg(SCN)₂ trong dung dịch NH₄SCN:

$$HgCl_2 + 2NH_4SCN = Hg(SCN)_2 + 2NH_4Cl$$

 $Hg(SCN)_2 + 2NH_4SCN = (NH_4)_2[Hg(SCN)_4]$

Dung dịch $(NH_4)_2[Hg(SCN)_4]$ được dùng để phát hiện ion Cu^{2+} và ion Co^{2+} khi có mặt ion Zn^{2+} , ion Cu^{2+} tạo nên kết tủa màu tím thẩm:

$$Cu^{2+} + Zn^{2+} + 2[Hg(SCN)_4]^{2-} = Cu[Hg(SCN)_4]. Zn[Hg(SCN)_4]$$

trong khi ion Co2+ tạo nên kết tủa màu chàm thẩm:

$$Co^{2+} + Zn^{2+} + 2[Hg(SCN)_4]^2 = Co[Hg(SCN)_4]. Zn[Hg(SCN)_4]$$

Hợp chất cơ thủy ngân

Thủy ngân(II) tạo nên một số lớn chất cơ kim, trong đó nhiều chất có hoạt tính sinh học. Những *cơ thủy ngân* có công thức tổng quát là RHgX và R₂Hg (R là gốc hiđrocacbon và X là anion axit).

Những chất cơ thủy ngân thường là hợp chất cộng hóa trị, tan trong dung môi hữu cơ nhiều hơn trong nước. Chi những RHgX, trong đó X là NO_3^- hay $SO_4^{2^-}$, là hợp chất ion, ví dụ như $[RHg]^+NO_3^-$.

Đa số cơ thủy ngân là chất lỏng dễ bay hơi, độc và rất có khả năng phản ứng. Người ta thường dùng chúng để điều chế những chất cơ kim khác.

Ví du:

$$R_2Hg + Zn = R_2Zn + Hg$$

Những cơ thủy ngân thường được điều chế bằng tác dụng của HgCl₂ với thuốc thứ Grinha lấy theo những tỉ lệ nhất định.

Ví du:

$$2RMgI + HgCl_2 = R_2Hg + MgI_2 + MgCl_2$$

 $R_2Hg + HgCl_2 = 2RHgCl$

HỌP CHẤT CỦA Hg(I)

Như đã nhận xét ở đầu chương, khác với Zn và Cd, thủy ngân còn tạo nên những hợp chất trong đó có ion Hg_2^{2+} với liên kết Hg-Hg. Sự tồn tại của ion đó được xác minh bằng thực nghiệm:

- Phương pháp từ-hóa học cho biết các hợp chất của Hg(I) đều nghịch từ, trong khi Hg^{\dagger} có electron độc thân.
- Phương pháp nghiên cứu kiến trúc bằng tia Rơnghen cho biết trong các hợp chất của Hg(I), liên kết Hg-Hg có độ dài biến đổi từ 2,43 đến 2,69Å tùy thuộc vào anion của hợp chất.
- Phương pháp đo độ dẫn điện của dung dịch thủy ngân(I) nitrat xác nhận trong dung dịch có mặt $\mathrm{Hg}_2(\mathrm{NO}_3)_2$ chứ không có monome $\mathrm{Hg}\mathrm{NO}_3$.

Có một số ít hợp chất của Hg(l). Đa số muối ít tan trừ nitrat, peclorat và florua dễ tạn.

Do có số oxi hóa trung gian, ion Hg_2^{2+} dễ bị khứ thành Hg và cũng dễ bị oxi hóa thành ion Hg^{2+} .

Ví du:

$$Hg_2Cl_2 + SnCl_2 = 2Hg + SnCl_4$$

 $Hg_2Cl_2 + SO_2 + 2H_2O = 2Hg + H_2SO_4 + 2HCl$
 $Hg_2Cl_2 + Cl_2 = 2HgCl_2$
 $3Hg_2Cl_2 + 8HNO_3 = 3HgCl_2 + 3Hg(NO_3)_2 + 2NO + 4H_2O$

Theo sơ đồ thế oxi hóa - khử, cân bằng tự phân hủy trong dung dịch của ion Hg_2^{2+} :

$$Hg_2^{2^+}$$
 \Longrightarrow $Hg + Hg^{2^+}$ có thể oxi hóa-khử chuẩn $E^o = -0.13V$ và có hằng số cân bằng $K = \frac{[Hg^{2^+}]}{[Hg_2^{2^+}]} = 6.0.10^{-3}$

Hằng số cân bằng đó cho thấy ion Hg_2^{2+} chỉ bền và không tự phân hủy trong một giới hạn hẹp. Cân bằng đó chuyển dịch nhiều sang bên phải bởi tác dụng của những chất có khả năng làm giảm mạnh nồng độ của ion Hg^{2+} bằng cách tạo thành kết tủa ít tan, hợp chất kém điện li hoặc phức chất bền.

Ví dụ:

$$Hg_2^{2+} + 2OH^- = Hg + HgO + H_2O$$

 $Hg_2^{2+} + S^{2-} = Hg + HgS$
 $Hg_2^{2+} + 2CN^- = Hg + Hg(CN)_2$
 $Hg_2^{2+} + 4CN^- = Hg + [Hg(CN)_4]^{2-}$

Đây là nguyên nhân có ít hợp chất của Hg(I).

Ion Hg_2^{2+} không có khả năng tạo phức như ion Hg_2^{2+} , có lẽ vì liên kết giữa ion Hg_2^{2+} và những phối tử khá mạnh đã làm yếu liên kết Hg–Hg trong ion đó gây nên sự phân bố lại mật độ electron giữa hai nguyên tử thủy ngân nên một biến thành Hg và một biến thành Hg^{2+} .

Thủy ngân(I) nitrat

Dihidrat thủy ngân(1) nitrat Hg₂(NO₃)₂.2H₂O là chất dạng tinh thể tà phương không màu, dễ tan trong nước và bị thủy phân tạo thành muối bazơ:

$$Hg_2(NO_3)_2 + H_2O = Hg_2OHNO_3 + HNO_3$$

Bởi vậy, khi pha dung dịch muối đó, cần phải thêm HNO_3 vào dung dịch để đẩy lùi phản ứng thủy phân.

Thủy ngân(I) nitrat thường dùng làm chất đầu để điều chế những hợp chất khác của Hg(I). Nó được điều chế bằng tác dụng của một lượng dư Hg với dung dịch HNO₃ có nồng độ trung bình.

Thủy ngân(I) halogenua

Thủy ngan(I) halogenua (Hg_2X_2) là chất dạng tinh thể từ phương, tinh thể Hg_2F_2 và Hg_2I_2 có màu vàng còn tinh thể Hg_2CI_2 và Hg_2Br_2 có màu trắng. Trừ Hg_2I_2 kém bền với nhiệt, các halogenua còn lại có thể thăng hoa mà không phân hủy.

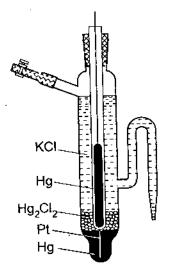
Thủy ngân(1) florua rất dễ tan trong nước và bị thủy phân mạnh theo phản ứng:

$$Hg_2F_2 + H_2O = Hg + HgO + 2HF$$

Ba halogenua còn lại rất ít tan nên không bị thủy phân và không tự phân hủy. Độ tan của chúng giảm xuống từ clorua đến iođua:

	Hg_2Cl_2	Hg_2Br_2	Hg_2I_2
Tích số tan, TT	$1,3.10^{-18}$	$5,2.10^{-23}$	$4,5.10^{-29}$

Cả bốn halogenua đều tự phân hủy khi tác dụng với dung dịch NH₃:


$$Hg_2X_2 + 2NH_3$$
. = $Hg + HgNH_2X + NH_4X$

Trước kia phản ứng này đã được dùng để phát hiện Hg₂Cl₂.

Khi tác dụng với dung dịch amoniac, Hg_2Cl_2 tạo nên một sản phẩm ít tan màu đen bao gồm kết tủa $HgNH_2Cl$ màu trắng trộn lẫn với những hạt Hg rất bé màu đen. Tên gọi *calomen* của Hg_2Cl_2 , tiếng Hg Lạp, có nghĩa là màu đen đẹp (*calos* là đẹp, *melos* là đen).

Trong các halogenua này, Hg₂Cl₂ là hóa chất thông dụng nhất. Trong điện hóa học, Hg₂Cl₂ được dùng để làm điện cực calomen (Hình 69). Điện cực đó làm bằng thủy ngân, bên trên phủ lớp bột nhão gồm có calomen và thủy ngân, tiếp xúc với dung dịch KCl bão hòa. Điện cực này có thế là 0,246V ở 25°C đối với điện cực hiđro chuẩn. Vì việc sử dụng điện cực hiđro gặp một số khó khăn về kĩ thuật, nên người ta dùng một số điện cực so sánh khác để đo thế. Điện cực calomen là một điện cực so sánh được dùng phổ biến nhất.

Các muối thủy ngân(I) halogenua có thể điều chế được hoặc trực tiếp từ các nguyên tố hoặc bằng phản ứng trao đổi giữa $Hg_2(NO_3)_2$ và halogenua kim loại kiểm.

Hinh 69. Điện cực calomen

CHƯƠNG XI

CÁC NGUYÊN TỐ LANTANOIT

Các lantanoit hay họ lantan có số thứ tự nguyên tử từ 58 đến 71 được xếp vào cùng một ô với lantan (số thứ tự 57), bao gồm các nguyên tố: xeri (Ce), praseođim (Pr), neođim (Nd), prometi (Pm), samari (Sm), europi (Eu), gadolini (Gd), techi (Tb), đysprosi (Dy), honmi (Ho), echi (Er), tuli (Tm), ytechi (Yb) và lutexi (Lu). Dưới đây là một số đặc điểm của các nguyên tố lantanoit cùng với Ba, La và Hf là những nguyên tố đứng trước, ở cùng ô và đứng sau các lantanoit (Bảng 26).

Bảng 26 Một số đặc điểm của các lantanoit (Ln)

	Số thứ											Thế điện
Nguyên	1 1	C	ấu hì	nh el	ectro	on	Năng	lượng ic	n hóa,	Bán kính	Bán kính	cực
	nguyên							eV		nguyên	ion, Ln ³⁺	chuẩn,
	tử	4f	5s	5p	5d	6s	[]	I ₂	I ₃	tứ, Å	Å	V
Ba	56		2	6		2	5,21	9,95		2,21		
La	57	_	$\frac{1}{2}$	6	1	2	5,77	11,38	19,10	1,877	1,061	-2,52
Ce	58	$\frac{1}{2}$	2	6	†		5,60	10,84	20,10	1,825	1,034	-2,48
Pr	59	3	2	6	_	2	5,40	10,54	21,65	1,828	1,013	-2,46
Nd	60	4	2	6	_	2	5,49	10,71	22,05	1,821	0,995	-2,43
Pm	61	5	2	6	-	2	5,55	10,90	22,17	-	0,979	-2,42
Ì	62	6	2	6	_	2	5,61	11,06	23,69	1,802	0,964	-2,41
Sin	63	7	2	6	_	2	5,66	11,24	25,12	2,042	0,950	-2,40
Eu Gd	64	7	2	6	1	2	6,16	12,14	20,71	1,082	0,938	-2,40
Tb	65	9	2	6		2	5,89	11,52	21,92	1,782	0,923	-2,39
1	66	10	2	6	١ _	2	5,87	11,66	23,10	1,773	0,908	-2,36
Dy	67	11	$\frac{1}{2}$	6	_	2	5,94	11,80	23,01	1,776	0,894	-2,32
Ho	68	12	2	6	_	2	5,81	11,92	22,87	1,757	0,881	-2,30
Er	69	13	2	6		2	6,0	12,05		1,746	0,899	-2,28
Tm	70	14	$\frac{1}{2}$	6	_	2	6,24	12,17	24,95		0,858	-2,27
Yb	71	14		6	1	1	5,31	18,89	1 .	l l	0,848	-2,25
Lu				$\frac{6}{6}$	2		5,50	14,90				
Hf	72	14	<u> </u>	\perp^{0}		12.	3,50	1 1,70			<u> </u>	<u> </u>

Câu hình electron chung của nguyên tử lantanoit là $4f^{2\cdot14}$ $5s^2$ $5p^65d^{6\cdot10}6s^2$. Trong các lantanoit, electron lần lượt điền vào obitan (4f) của lớp ngoài thứ ba trong khi lớp ngoài cùng có 2 electron (6s²) và lớp ngoài thứ hai của đa số nguyên tố có 8 electron (5s²5p⁶). Những dữ kiện quang phổ cho biết các obitan 4f và 5d có năng lượng gần nhau, trong nguyên tử lantanoit, các obitan 4f có năng lượng thấp hơn các obitan 5d. Bởi vậy, khác với La, trong nguyên tử các lantanoit, electron 5d chuyển vào 4f trừ Gd.

Dựa vào cách điển electron vào obitan 4f, các nguyên tố lantanoit được chia thành 2 nhóm. Bảy nguyên tố đầu từ Ce đến Gd có electron điển vào các obitan 4f tuân theo quy tắc Hun, nghĩa là mỗi obitan một electron, họp thành nhóm xeri hay nhóm lantanoit nhẹ; bảy nguyên tố còn lại từ Tb đến Lu có electron thứ hai lần lượt điển vào các obitan 4f, họp thành nhóm tecbi, hay nhóm lantanoit nặng:

							La
							4f ⁰ 5d ¹
Nhóm xeri	Ce	Pr	Nd	Pm	Sm	Eu	Gd
	$4f^2$	$4f^3$	4f ⁴	4 f ⁵	4f ⁶	$4f^7$	4f ⁷ 5d ¹
Nhóm tecbi	Tb	Dу	Но	Er	Tm	Yb	Lu
	4f ⁷⁺²	4f ⁷⁺³ ·	$4f^{7+4}$	$4f^{7+5}$	4f ⁷⁺⁶	4f ⁷⁺⁷	4f ¹⁴ 5d ¹

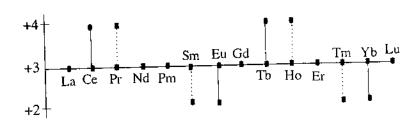
Qua cấu hình electron của nguyên tử các nguyên tố từ La đến Lu, nhận thấy electron có thêm (ngoài cấu hình $4f^7$ và $4f^{14}$) của Gd và Lu cũng như của La đều ở trên obitan 5d.

Khi được kích thích nhẹ, một (ít khi hai) trong các electron 4f nhảy sang obitan 5d, electron 4f còn lại bị các electron $5s^25p^6$ chắn với tác dụng bên ngoài cho nên không có ảnh hưởng quan trọng đến tính chất của đa số lantanoit. Như vậy, tính chất của lantanoit được quyết định chủ yếu bởi các electron $5d^16s^2$. Bởi vậy, các lantanoit giống nhiều với nguyên tố d nhóm IIIB, chúng rất giống với ytri và lantan có các bán kính nguyên tử và ion tương đương.

Sự khác nhau trong kiến trúc nguyên tử chỉ ở lớp ngoài thứ ba ít có ảnh hưởng đến tính chất hóa học của nguyên tố nên các lantanoit rất giống với nhau. Mặt khác, chúng rất giống với lantan và ytri nên người ta xếp tất cả chúng thành họ nguyên tố đất hiếm. Người ta cũng thường hay phân chia đất hiếm thành nhóm xeri bao gồm La, Ce, Pr, Nd, Pm, Sm và Eu (nhóm đất hiếm nhẹ) và nhóm ytri bao gồm Y, Gd, Tb, Dy, Ho, Er, Tm, Yb và Lu (nhóm đất hiếm nặng).

Ngoài những tính chất đặc biệt giống nhau, các lantanoit cũng có những tính chất không giống nhau, từ Ce đến Lu một số tính chất biến đổi đều đặn và một số tính chất biến đổi tuần hoàn:

- Sự biến đổi đều đặn các tính chất được giải thích bằng sự co lantanoit. Co lantanoit là sự giảm bán kính nguyên tử của chúng theo chiều tăng của số thứ tự nguyên tử. Nguyên nhân của sự co đó là sự tăng lực hút các lớp electron ngoài (n=5 và n=6) khi điện tích hạt nhân tăng


lên từ La đến Lu. Mười bốn nguyên tố lantanoit (có số thứ tự từ 58 đến 71) được xếp vào cùng một ô trong bảng tuần hoàn với La (có số thứ tự 57). Sự co lantanoit làm cho nguyên tử của các nguyên tố đứng sau La-Lu ở trong cùng chu kì 6 có bán kính không khác mấy so với nguyên tố cùng nhóm ở trong chu kì 5. Ví dụ những cặp nguyên tố Zr-Hf, Nb-Ta có bán kính thực tế bằng nhau v.v... Chính vì vậy, những nguyên tố trong chu kì 5 và 6 thuộc nhóm IVB, VB và VIB có tính chất giống nhau từng đôi một.

- Sự biến đổi tuần hoàn tính chất của các lantanoit và hợp chất được giải thích bằng việc điển vào các obitan 4f, lúc đầu mỗi obitan một electron và sau đó mỗi obitan một electron thứ hai. Ví dụ sự biến đổi của tổng năng lượng ion hóa thứ nhất, thứ hai và thứ ba của các lantanoit: năng lượng đó tăng từ La đến Eu là cực đại rồi giảm xuống ở Gd và tiếp tục tăng lên đến Yb là cực đại và giảm xuống ở Lu. Sự giảm sút đột ngột tổng năng lượng ion hóa ở Gd và Yb chứng tỏ sự dễ dàng mất một electron d dư thừa so với cấu hình bền 4f² và 4f¹⁴.

Electron hóa trị của lantanoit chủ yếu là các electron 5d¹6s² nên trạng thái oxi hóa bền và đặc trưng của chúng là +3. Tuy nhiên, những nguyên tố đứng gần La (4f⁰), Gd (4f⁷) và Lu (4f¹⁴) có số oxi hóa biến đổi. Ví dụ như Ce (4f²s²) ngoài số oxi hóa +3 còn có số oxi đặc trưng là +4. Đó là kết quả của việc chuyển 2 electron 4f sang obitan 5d. Tương tự như vậy, Pr(4f³6s²) có thể có số oxi hóa +4 nhưng kém đặc trưng hơn so với Ce. Ngược lại, Eu (4f⁷6s²) có thể có số oxi hóa +2, Sm (4f⁶6s²) cũng có số oxi hóa +2 nhưng kém đặc trưng hơn.

Điều tương tự cũng xảy ra trong nhóm tecbi: Tb $(4f^96s^2)$ và Dy $(4f^{10}6s^2)$ có thể có số oxi hóa +4, Yb $(4f^{14}6s^2)$ và Tm $(4f^{13}6s^2)$ có thể có số oxi hóa +2.

Như vậy các số oxi hóa của các lantanoit cũng biến đổi tuần hoàn:

Sự khác nhau về tính chất của các lantanoit có liên quan đến sự co lantanoit và cách điền electron vào các obitan 4f tất nhiên là không lớn. Nhưng trên nền chung của những tính chất rất giống nhau của các lantanoit, sự khác nhau về tính chất có tầm quan trọng trong việc tách riêng các nguyên tố lantanoit ra khỏi nhau.

ĐƠN CHẤT

Tính chất lí hóa học

Các lantanoit là những kim loại màu trắng bạc, riêng Pr và Nd có màu vàng rất nhạt. Ở

trạng thái bột, chúng có màu từ xám đến đen. Đa số kim loại kết tính ở dạng tính thể lập phương. Tất cả kim loại đều khó nóng chảy và khó sôi. Dưới đây là một số hằng số vật lí quan trọng của chúng (Bảng 27).

Bảng 27 Một số hàng số vật lí của kim loại lantanoit

Kim loại (Ln)	Nhiệt độ nóng chảy, °C	Nhiệt độ sôi, °C	Tỉ khối	Nhiệt thăng hoa, kJ/mol
Ce	804	3470	6,77	419
Pr	935	3017	6,77	356
Nd	1024	3210	7,01	328
Pm	1080	3000	7,26	301
Sm	1072	1670	7,54	207
, Eu	826	1430	5,24	178
Gd	1312	2830	7,89	398
Tb	1368	2480	8,25	389
Dy	1380	2330	8,56	291
Но	1500	2380	8,78	301
Er	1525	2390	9,06	317
Tm	1600	1720	9,32	232
Yb	824	1320	6,95	152
Lu	1675	2680	9,85	410

Qua bảng nhận thấy nhiệt độ nóng chảy, nhiệt độ sôi, nhiệt thăng hoa và tỉ khối của các kim loại lantanoit cũng biến đổi tuần hoàn theo điện tích hạt nhân. Các hằng số đều có giá trị cực tiểu ở Eu (4f⁷6s²) và Yb (4f¹⁴6s²), có lẽ vì trong đó chỉ có hai electron 6s tham gia vào liên kết kim loại, còn các cấu hình bền 4f⁷ và 4f¹⁴ không tham gia.

Các lantanoit đều giòn, có độ dẫn điện tương đương thủy ngân. Các lantanoit tạo hợp kim với nhiều kim loại, trong đó thường tạo nên hợp chất giữa - kim loại. Các lantanoit được dùng để cho thêm vào một số hợp kim. Để sản xuất loại gang biến tính, người ta cho thêm các lantanoit. Do tác dụng của các lantanoit, không những một số tạp chất có hại ở trong gang bị loại ra mà kiến trúc của cacbon trong gang cũng biến đổi làm giảm tính giòn của gang và gang

biến tính đó có thể thay thế thép. Thêm lantanoit vào hợp kim của magie làm cho hợp kim bến cơ học và bền nhiệt hơn. Những hợp kim này được dùng để chế tạo thiết bị trong máy bay. Lantanoit được cho thêm vào các loại thép, đặc biệt để tăng chất lượng thép. Thép chứa 6% Cc dùng làm dụng cụ phẫu thuật trong y tế.

Nhiều kim loại lantanoit có tiết diện bắt nơtron lớn nên được dùng để hấp thụ nơtron nhiệt trong lò phản ứng hạt nhân.

Samari là kim loại có từ-tính mạnh khác thường vì trên obitan 4f của nguyên từ có 6 electron độc thân. Những nam châm làm bằng hợp chất giữa-kim loại của samari như SmCo, và SmFeCu có từ-tính mạnh, gấp 5-6 lần nam châm làm bằng sắt. Như vậy những hợp kim của samari cho phép thu nhỏ động cơ điện. Điều này đặc biệt quan trọng đối với việc chế tạo các thiết bị trên máy bay và tàu vũ trụ. Một nam châm làm bằng sắt nặng 40kg có thể thay thế bằng một nam châm làm bằng hợp kim của samari và coban chỉ nặng 2,45kg với giá thành giám 50%.

Về mặt hóa học, các lantanoit là những kim loại hoạt động, chỉ kém kim loại kiểm và kiểm thổ. Nhóm xeri hoạt động hơn nhóm techi.

Kim loại dạng tấm bền ở trong không khí khô. Trong không khí ẩm, kim loại bị mờ đục nhanh chóng vì bị phủ màng cacbonat bazơ được tạo nên do tác dụng với nước và khí cacbonic.

Ở 200-400°C, các lantanoit cháy trong không khí tạo thành oxit và nitrua. Xeri và một vài lantanoit khác có tính tự cháy. Chính nhà hóa học Áo Von Venbach (A. Von Welsbach) đã xây dựng nhà máy sản xuất đá lửa từ hợp kim feroxeri và bằng lợi nhuận của nhà máy ông đã xây dựng viện khoa học nghiên cứu về hóa học các đất hiếm.

Các lantanoit tác dụng với halogen ở nhiệt độ không cao, tác dụng với N_2 , S, C, Si, P và H_2 khi đun nóng.

Các lantanoit tác dụng chậm với nước nguội, nhanh với nước nóng giải phóng khí hidro, tan để dàng trong các dụng dịch axit trừ HF và H_3PO_4 vì muối ít tan được tạo nên sẽ ngắn cán chúng tác dụng tiếp tục. Các lantanoit không tan trong kiểm kể cả khi đun nóng.

 \mathring{O} nhiệt độ cao, lantanoit có thể khử được oxit của nhiều kim loại ví dụ như sắt, mangan ... Kim loại xeri ở nhiệt độ nóng đỏ có thể khử khí CO, CO_2 đến C.

Trạng thái thiên nhiên, lịch sử phát hiện và phương pháp điểu chế

Về trữ lượng trong vỏ Trái Đất, các lantanoit không thua kém I, Sb và Cu, nhưng chúng rất phân tán trong thiên nhiên. Người ta biết được trên 250 khoáng vật có chứa các lantanoit. Lantanoit với số thứ tự nguyên tử chắn có thể phổ biến hơn lantanoit có số thứ tự nguyên tử lẻ, phổ biến nhất là Ce và hiếm nhất là Tm. Mỗi lantanoit với số thứ tự lẻ chỉ có một đồng vị thiên nhiên trừ Eu và Lu, mỗi nguyên tố có hai đồng vị. Mỗi lantanoit với số thứ tự chắn có 7 đồng

vị, riêng Er có 6 và Ce có 4 đồng vị. Prometi là nguyên tố phóng xạ không có trong thiên nhiên, được tìm thấy trong khoáng vật của uran, nó là sản phẩm phân rã phóng xạ của uran.

Trong thiên nhiên, các lantanoit ở chung với nhau và với Y và La, người ta gọi chung chúng là nguyên tố họ đất hiếm. Những khoáng vật quan trọng của nguyên tố đất hiếm là monazit, batnesit (xem các nguyên tố nhóm IIIB), loparit (Na,Cu,Ln)₂ (Ti,Nb,Ta)₂O₆ ... Những nước giàu khoáng vật của đất hiếm là: Nga, Mỹ, Ấn Độ, Canađa và Nam Phi. Nước ta có mỏ các khoáng vật của đất hiếm ở Nậm Xe (Cao Bằng) và có cát monazit ở trong các sa khoáng ven biển miền Trung.

Nguyên tố đất hiểm có tính chất rất giống nhau, ở cùng với nhau trong khoáng vật và bao gồm một số lượng lớn nguyên tố (16) nên lịch sử phát hiện của chúng có liên quan mật thiết với nhau và khá phức tạp. Bởi vậy, việc quy kết quyền phát minh nguyên tố cho nhà khoa học nào đã gặp không ít khó khăn. Tính từ khi tách được "đất ytri" lần đầu tiên đến khi phát hiện được nguyên tố đất hiểm cuối cùng là Lu, thời gian kéo dài hơn một thế kỉ.

Năm 1803, Claprot (người Đức) và Beczeliuyt (người Thụy Điển) độc lập với nhau đã tách được từ khoáng vật xerit một oxit của xeri, tên gọi xuất phát từ chữ La Tinh Ceria để ghi nhớ việc tìm ra nguyên tố ngay sau khi phát hiện được tiểu hành tinh Ceres. Năm 1843, Monzande đã tách từ "đất ytri" được ba oxit: oxit của ytri tạo nên muối không màu, oxit của techi tao nên muối màu vàng và oxit của echi màu vàng thẫm tạo nên muối không màu. Sau đó người ta hoán vị cho nhau tên gọi của hai nguyên tố techi và echi: echi là nguyên tố tạo nên oxit và muối đều có màu hồng còn techi là nguyên tố tạo nên oxit màu nâu nhạt và muối không màu. Năm 1878, Locôc đơ Boabodrăng (Lecoq de Boisbaudran, 1838-1912) phát hiện được nguyên tố samari trong khoáng vật do kĩ sư Samacki (Samarki) tìm thấy ở vùng núi Uran. Cùng năm đó, Marinhac nghiên cứu oxit của ecbi đã tách được từ muối màu hồng một chất không màu và ông gọi đó là muối của ytechi. Chính từ muối ytechi này của Marinhac, Ninxon đã tách được muối của nguyên tố scanđi (năm 1879). Như vậy, từ "đất ytri", người ta đã phát hiên được một số đất hiểm, trong đó bốn nguyên tố ytri, ecbi, tecbi và ytecbi đều có tên gọi xuất phát từ chữ Ytterby là tên của làng đầu tiên đã phát hiện được khoáng vật gađolinit. Như đã biết, từ "đất xeri", Mozanđe đã tách được "đất lantan", rồi từ "đất lantan" đã tách được oxit của lantan và oxit của điđim, tiếng Hi Lạp didymos là sinh đôi. Năm 1885, nhà hóa học người Áo là Von Venbach tìm thấy điđim của Mozanđe là hai nguyên tố: neođim, tiếng Hi Lạp neos nghĩa là mới và praseođim, tiếng Hi Lạp praseos nghĩa là màu lục. Neođim tạo nên muối màu tím-đỏ, , praseođim tạo nên muối màu lục nên khi hai muối đó kết tinh với nhau thì tạo nên muối không màu. Năm 1886, Marinhac tách được từ muối của samari một hợp chất của nguyên tố mới là gađolini, tên gọi này ghi nhớ công lao của ông Gađolin, người đã đặt nền móng cho việc phát hiện các nguyên tố đất hiếm. Cùng năm này, nhà hóa học Thụy Điển là Clêvo (T. Cleve) tìm thấy trong ecbi có các nguyên tố honmi và tuli, tiếng La Tinh Holmia là tên cổ của thủ đô Stockholm và Thule là "vùng cực bắc của châu Âu" tức vùng Scandinavie. Năm 1886, Locôc đơ Boadođrăng dùng phương pháp phân tích quang phổ đã phát hiện được trong honmi một nguyên tố mới nữa là dysprosi, tiếng Hi Lạp dysprositos nghĩa là khó kiếm được. Năm 1901, nhà hóa học người Pháp là Đemacxay (Demarsay) tách được europi từ samari, tên gọi của : guyên tố này xuất phát từ chữ Europe có nghĩa là châu Âu. Năm 1907, Von Venbach (người Áo) và Uyabanh (G. Urbain, người Pháp) độc lập với nhau đã tách được từ ytechi một hợp chất của nguyên tố mới. Uyabanh đặt tên cho nguyên tố đó là lutexi, tiếng La Tinh Lutetia là tên cổ của thủ đô Pari.

10.0

Năm 1947, các nhà khoa học Mỹ là Marinski (A. Marinsky), Glenđenin (E. Glendenin) và Corien (D. Coryell) đã phát hiện được số thứ tự 61 trong sản phẩm phân rã của ²³⁵U trong lò phản ứng hạt nhân. Các ông đặt tên cho nguyên tố đó là *prometi* lấy tên của vị thần *Prometheus* trong truyền thuyết Hi Lạp, người đã ăn trộm lửa của Ngọc Hoàng cho loài người. Họ đặt tên như vậy ngụ ý rằng trên con đường điều chế nguyên tố mới do con người nắm được năng lượng của sự phân rã hạt nhân nguyên tử là đầy chông gai nhưng cũng cảnh báo cho con người về hiểm họa của chiến tranh nguyên tử khi dùng năng lượng này.

Sự tồn tại của số thứ tự 61 đã được dự đoán từ năm 1913 nhờ định luật Mozolây (H. Moseley, 1887-1915): căn số bậc hai số nghịch đảo của bước sóng bức xạ Rơnghen (sinh ra do electron nhảy từ các obitan ở xa hạt nhân nguyên tử về các obitan của các lớp bên trong) là tỉ lệ thuận với số thứ tự nguyên tử:

$$\sqrt{\frac{1}{\lambda}} = a(z-b)$$

trong đó λ là bước sóng của bức xạ Ronghen, z là số thứ tự nguyên tố, a và b là những hằng số. Định luật Mozolay cho phép xác định số thứ tự nguyên tố bằng thực nghiệm. Nhờ định luật đó người ta đã khẳng định được rằng giữa La và Hf có 14 nguyên tố lantanoit.

Các kim loại lantanoit được điều chế chủ yếu bằng phương pháp điện phân muối florua hay clorua khan nóng chảy trong bình điện phân làm bằng kim loại tantan (tantan bền với kim loại đất hiếm nóng chảy) và trong khí quyển agon. Phương pháp điện phân này không dùng được đối với các lantanoit có nhiệt độ nóng chảy cao vì ở nhiệt độ đó các muối halogenua có thể bay hơi. Ngoài ra, người ta còn dùng phương pháp nhiệt-kim loại. Những chất khử có thể dùng là Na, Ca, Mg ..., nhưng thường dùng hơn hết là Ca:

$$2LnF_3(Cl_3) + 3Ca = 3CaF_2(Cl_2) + 2Ln$$

 $Ln_2O_3 + 3Ca = 3CaO + 2Ln$

Quá trình cũng được thực hiện trong những nổi làm bằng tantan và trong khí quyển agon. Phương pháp nhiệt-kim loại không thể áp dụng cho halogenua của samari, europi và ytecbi vì trong trường hợp đó, kim loại sẽ khử các trihalogenua đến đihalogenua chứ không đến lantanoit.

CÁC HƠP CHẤT CỦA LANTANOIT

Oxit Ln₂O₃

Các oxit Ln_2O_3 có thể ở dạng vô định hình hay ở dạng tinh thể; một số ở dạng tinh thể lục phương, số khác ở dạng tinh thể lập phương. Oxit Ln_3O_3 giống với oxit của kim loại kiềm thổ. Chúng rất bền với nhiệt (ΔG_u° của chúng vào khoảng -1600 kJ/mol) và khó nóng chảy (nđnc. vào khoảng 2000°C).

Chúng không tan trong nước nhưng tác dụng với nước tạo thành hiđroxit và phát nhiệt. Chúng tan dễ dàng trong axit tạo thành dung dịch chứa ion $[Ln(H_2O)_n]^{3+}$, trong đó n=8-9, nhưng giống với Al_2O_3 là sau khi đã nung trước sẽ kém hoạt động. Các oxit Ln_2O_3 không tan trong dung dịch kiềm nhưng tan trong kiềm nóng chảy:

$$Ln_2O_3 + Na_2CO_3 = 2NaLnO_2 + CO_2$$

Những lantanoiđat NaLnO₂ của các nguyên tố đất hiếm nhóm ytri là rất bền nhiệt và bền hóa học.

Các $\rm Ln_2O_3$ thường được dùng làm chất xúc tác hoặc chất kích hoạt chất xúc tác. Các oxit $\rm Y_2O_3$ và $\rm Eu_2O_3$ được dùng trong sản xuất các kinescôp của máy thu hình, $\rm Nd_2O_3$ được dùng trong quang học laze và dùng làm tụ điện gốm, $\rm Pr_6O_{11}$ dùng làm bột màu ...

Các $\rm Ln_2O_3$ được điều chế bằng cách nhiệt phân hiđroxit, cacbonat, oxalat, nitrat của lantanoit. Phương pháp này không dùng để điều chế oxit tương ứng của Ce, Pr và Tb vì oxit bền của chúng là $\rm CeO_2$, $\rm Pr_6O_{11}$ và $\rm Tb_4O_7$. Để điều chế những oxit đó, người ta dùng khí $\rm H_2$ khử oxit bền của những nguyên tố đó khi đun nóng.

Hidroxit Ln(OH)3

Các hiđroxit $Ln(OH)_3$ là chất dạng kết tủa vô định hình, thực tế không tan trong nước, tích số tan của chúng là vào khoảng từ $10^{-20}\,$ ở $Ce(OH)_3$ đến $10^{-24}\,$ ở $Lu(OH)_3$. Độ bền nhiệt của chúng cũng giảm xuống từ Ce đến Lu.

Là những bazơ khá mạnh, tính bazơ nằm giữa $Mg(OH)_2$ và $Al(OH)_3$ và giảm dần từ Ce đến Lu. Do có thể hấp thụ khí CO_2 trong không khí, các hidroxit thường chứa tạp chất cacbonat bazơ.

Một số hiđroxit có thể tan trong kiềm nóng chảy tạo thành những hợp chất lantanoiđat, víx
dụ như KNdO2, NaPr(OH)4 ...

Các Ln(OH)₃ được điều chế bằng tác dụng của các dung dịch muối Ln(III) với dung dịch kiểm hay amoniac. Khi để trong không khí, Ce(OH)₃ chuyển dần thành Ce(OH)₄.

Các muối của Ln(III)

Ion Ln3+ có màu sắc biến đổi tùy thuộc vào cấu hình electron 4f. Những electron có cấu

hình $4f^0$, $4f^7$ và $4f^{14}$ cũng như cấu hình $4f^1$ và $4f^{13}$ đều không có màu còn các cấu hình electron 4f khác có màu khác nhau:

La ³⁺ (4f ⁰) Ce ³⁺ (4f ²) Nd ³⁺ (4f ³) Pm ³⁺ (4f ⁴) Sm ³⁺ (4f ⁵) Eu ³⁺ (4f ⁶)	không màu lục đó nhạt hồng, vàng vàng hồng nhạt	Lu ³⁺ (4f ¹⁴) Tm ³⁺ (4f ¹²) Er ³⁺ (4f ¹¹) Ho ³⁺ (4f ¹⁰) Dȳ ³⁺ (4f ⁹) Tb ³⁺ (4f ⁸)
Eu ³⁺ (41°) Gd ³⁺ (4f ⁷)	không màu	$Gd^{3+}(4f^7)$

Màu của ion Ln³⁺ sinh ra do sự chuyển dời electron f-f. Vì những electron 4f bị các electron 5s²5p⁶ chắn với tác dụng bên ngoài nên màu của ion Ln³⁺ không phụ thuộc vào bản chất của phối tử bao quanh.

Muổi của lantanoit giống nhiều với muối của canxi, các muối clorua, bromua, iođua, nitrat và sunfat tan trong nước, còn các muối florua, cacbonat, photphat và oxalat không tan. Các muối tan khi kết tinh đều ở dạng hiđrat ví dụ như LnBr₃.6H₂O, Ln(NO₃)₃.6H₂O, Ln(SO₄)₃.8H₂O. Các muối Ln³⁺ bị thủy phân một phần trong dung dịch nước và khả năng đó tăng lên từ Ce đến Lu. Điểm nổi bật của Ln³⁺ là dễ tạo nên các muối kép. Trước kia người ta dùng các muối kép để phân chia lantanoit.

Lantanoit trihalogenua (LnX₃). Lantanoit trihalogenua là những chất ở dạng tinh thể có cấu tạo ion. Nhiệt độ nóng chảy và nhiệt độ sôi của chúng đều cao và giám xuống từ bromua đến iođua. Các triflorua khan không tan trong nước còn các trihalogenua khan khác hút ẩm và chảy rữa khi để trong không khí ẩm. Được nghiên cứu nhiều hơn cả là các triflorua và triclorua. Các triclorua khan có khả năng hấp thụ khí NH₃ tạo nên những amoniacat LnCl₃.xNH₃.

Các trihalogenua được điều chế từ các nguyên tố hoặc bằng tác dụng của oxit với dung dịch HX. Các triclorua khan còn có thể điều chế bằng tác dụng của CCl_4 với Ln_2O_3 ở 400-600°C hoặc của Cl_2 với hỗn hợp Ln_2O_3 và than:

$$2Ln_2O_3 + 3CCl_4 = 4LnCl_3 + 3CO_2$$

 $Ln_2O_3 + 3C + 3Cl_2 = 2LnCl_3 + 3CO$

Lantanoit(III) sunfat $(Ln_2(SO_4)_3)$. Các lantanoit(III) sunfat đều tan trong nước, khi kết tinh từ dung dịch chúng thường ở dạng hiđrat $Ln_2(SO_4)_3.8H_2O$. Khi đun nóng ở 600-650°C, các hiđrat mất nước biến thành muối khan. Độ tan của các lantanoit(III) sunfat giảm xuống khi nhiệt độ tăng.

Giống với lantan(III) sunfat, muối $\mathrm{Ln_2(SO_4)_3}$ dễ tạo nên muối kép với muối sunfat kim loại kiềm hay amoni, ví dụ như muối kép $\mathrm{Ln_2(SO_4)_3.3Na_2SO_4.12H_2O}$. Muối sunfat kép của đất hiếm nhóm xeri không tan trong dụng dịch bão hòa của muối sunfat kim loại kiềm hay amoni, còn muối sunfat kép của đất hiếm nhóm ytri tan nhiều hơn. Sự khác nhau về độ tan của muối

sunfat kép được dùng để phân chia sơ bộ các đất hiểm thành hai nhóm.

Các $\mathrm{Ln_2(SO_4)_3}$ được điều chế bằng cách hòa tan oxit, hiđroxit hay cacbonat của lantanoit trong dung dịch axit sunfuric loãng.

Lantanoit(III) nitrat $(Ln(NO_3)_3)$. Lantanoit(III) nitrat dễ tan trong nước khi kết tinh từ dung dịch ở dạng hidrat. Những hidrat này hút ẩm và dễ chảy rữa trong không khí. Khi đun nóng chậm trong không khí, các hidrat mất nước biến thành muối bazơ không tan trong nước và cuối cùng biến thành oxit khi đun nóng tiếp tục.

Lantanoit(III) nitrat có thể tạo nên muối kép với nitrat amoni, kim loại kiềm hay kim loại kiềm thổ. Những muối nitrat kép được nghiên cứu nhiều nhất là $2\text{Ln}(\text{NO}_3)_3.3\text{Mg}(\text{NO}_3)_2.24\text{H}_2\text{O}$ và $\text{Ln}(\text{NO}_3)_3.2\text{NH}_4\text{NO}_3.4\text{H}_2\text{O}$.

Muối nitrat kép của Ln và Mg được dùng để phân chia hỗn hợp các đất hiếm nhóm xeri. Độ tan rất bé của nitrat kép của La(NO₃)₃.2NH₄NO₃.4H₂O trong dung dịch amoni nitrat bão hòa được dùng trong công nghệ điều chế lantan tinh khiết. Trước kia, chính Von Venbach bằng cách kết tinh phân đoạn muối nitrat kép của điđim và amoni đã tách riêng được muối của neođim và muối của praseodim sau hàng trăm lần kết tinh lại các muối.

Các $Ln(NO_3)_3$ được điều chế bằng cách hòa tan oxit, hiđroxit hay cacbonat của lantanoit trong dung dịch HNO_3 .

Lantanoit(III) cacbonat $(Ln_2(CO_3)_3$. Lantanoit(III) cacbonat là chất ở dạng kết tủa, thực tế không tan trong nước. Khi đun nóng trong nước nó chuyển thành cacbonat bazơ:

$$Ln_2(CO_3)_3 + H_2O = 2Ln(OH)CO_3 + CO_2$$

Khi bị nhiệt phân, sản phẩm sau cùng là oxit ${\rm Ln_2O_3}$.

Lantanoit(III) cacbonat được dùng làm chất đầu để điều chế các oxit và hợp chất khác nhau của lantanoit.

 ${\rm Ln_2(CO_3)_3}$ được tạo nên khi cho muối lantanoit(III) tác dụng đủ với dung dịch cacbonat kim loại kiểm hay amoni. Khi có dư cacbonat kim loại kiểm hay amoni sẽ thu được muối cacbonat kép ${\rm M_2CO_3.Ln_2(CO_3)_3.nH_2O}$ (trong đó M=cation kim loại kiềm hay ${\rm NH_4^+}$). Các cacbonat kép của đất hiếm nhóm xeri hầu như không tan trong dung dịch bão hòa của cacbonat kim loại kiềm hay amoni, còn các cacbonat kép của đất hiếm nhóm ytri có độ tan tăng lên dần.

Lantanoit(III) oxalat ($\text{Ln}_2(\text{C}_2\text{O}_4)_3.10\text{H}_2\text{O}$). Hidrat của lantanoit(III) oxalat là chất dạng kết tủa trắng, tan rất ít trong nước, ít hơn cả $\text{CaC}_2\text{O}_4.4\text{H}_2\text{O}$. Bởi vậy, lantanoit(III) oxalat không tan trong môi trường axit (pH≤3) trong khi canxi oxalat tan. Người ta thường dùng axit oxalic hay muối oxalat tạn để tách hoàn toàn đất hiếm ra khỏi các kim loại khác kể cả canxi bằng cách kết tủa lantanoit(III) oxalat trong dung dịch axit nitric loãng. Rửa sạch kết tủa oxalat đó rồi nung ở ≈900°C, thu được oxit:

$$Ln_2(C_2O_4)_3.10H_2O = Ln_2O_3 + 3CO + 3CO_2 + 10H_2O$$

Oxit $\rm Ln_2O_3$ được tạo nên đối với tất cả các lantanoit trừ Ce, Pr và Tb vì khi nung oxalat ở trong không khí, Ce(III) bị oxi hóa thành Ce(IV) và tạo nên CeO₂ màu vàng, còn Pr và Tb tạo nên oxit màu đỏ thẩm $\rm Pr_6O_{11}$ (hay $\rm 4PrO_2.Pr_2O_3$) và $\rm Tb_4O_7$ (hay $\rm 2TbO_2.Tb_2O_3$).

Ion Ln^{3+} cũng dễ tạo nên muối oxalat kép $MLn(C_2O_4)_2$ với muối oxalat kim loại kiềm hay amoni. Những oxalat kép này tan ít trong nước, oxalat kép của đất hiếm nhóm xeri tan ít hơn oxalat kép của đất hiếm nhóm ytri.

Phức chất của lantanoit(III)

Giống với ion Ca^{2+} , ion Ln^{3+} có thể tạo nên với những phối tử thông thường như NH_3 , Cl^- , CN^- , NO_3^- , SO_4^{2-} ... những phức chất rất không bền: trong dung dịch loãng những phức chất đó phân li hoàn toàn, trong dung dịch đặc chúng kết tinh ở dạng *muối kép*.

Những phức chất bền của Ln³+ là phức chất vòng càng tạo nên với những phối tử hữu cơ có nhiều càng như axit xitric, axit tactric, axit aminopoliaxetic.

Những phức chất vòng càng này của Ln³+ có độ bền tăng lên theo chiều giảm của bán kính ion, nghĩa là từ Ce đến Lu. Khi tạo phức, ion Ln³+ làm biến đổi cấu tạo phán tử của phối tử nhiều càng như góc giữa liên kết và độ dài của các liên kết ... Bởi vậy, sự khác nhau tuy rất ít về bán kính của các ion ở trong dãy lantanoit có ảnh hưởng đến tính chất của các phức chất vòng càng mạnh hơn nhiều so với các hợp chất đơn giản như hiđroxit, nitrat, clorua. Sự khác nhau về độ bền của các phức chất vòng càng của các lantanoit là cơ sở để tách riêng từng nguyên tố đất hiếm ra khỏi hỗn hợp (thường gọi là phân chia hỗn hợp).

Phức chất của lantanoit(III) với axit xitric. Axit xitric $(H_3C_6H_5O_7)$ là axit ba mắc, thường được kí hiệu là H_3 Cit, có cấu tạo:

Axit xitric và muối xitrat tạo nên với ion Ln³+ phức chất monoxitrat LnCit.xH₂O tan ít trong nước nhưng tan trong dung dịch natri xitrat nhờ tạo nên phức chất đixitrato Na[LnCit₂].yH₂O tan trong nước.

Những phức chất đixitrato là những phức chất lần đầu tiên được sử dụng để phân chia hỗn hợp đất hiếm bằng phương pháp trao đổi ion và ngày nay còn được tiếp tục dùng trong phân tích hóa học.

Phức chất của lantanoit(III) với axit etylenđiamintetraaxetic. Axit etylenđiamintetraaxetic (EĐTA) và muối của nó tạo nên với các ion $\mathrm{Ln^{3+}}$ những phức chất vòng càng có công thức H[$\mathrm{Ln}(\mathrm{EĐTA})$]. Những phức chất này rất bền, hằng số bền của chúng biến đổi từ $\approx 10^{15}$ ở Ce đến $\approx 10^{19}$ ở Lu .

Ngày nay trong phân tích hóa học và công nghệ, người ta sử dụng phức chất này để phân chia các nguyên tố đất hiếm bằng phương pháp trao đối ion.

Hợp chất của Ln(IV)

Như đã nói ở đầu chương, trạng thái oxi hóa +4 là đặc trưng đối với Ce và một phần đối với Tb và Pr. Những hợp chất của Tb(IV) và Pr(IV) đều kém bền hơn những hợp chất của Ce(IV) nên là chất oxi hóa rất mạnh. Thế oxi hóa khử của các cặp Tb⁴⁺/Tb³⁺ và Pr⁴⁺/Pr³⁺ là trên 3V, còn của Ce⁴⁺/Ce³⁺ là 1,61V. Vì vậy, hợp chất của Pr(IV) và Tb(IV) không tồn tại được trong dụng dịch nước, chúng oxi hóa nước giải phóng oxi:

$$4Pr^{4+} + 2H_2O = 4Pr^{3+} + O_2 + 4H^+$$

Xeri đioxit (CeO_2) là chất dạng tinh thể màu vàng nhạt, có mạng lưới kiểu CaF_2 . Nó khó nóng chảy (nđnc. là 2500°C), rất bền với nhiệt và không tan trong nước. Sau khi đã được nung, oxit đó trở nên trơ về mặt hóa học: không tan trong các dung dịch axit và kiềm nhưng tác dụng khi đun nóng.

Ví du:

$$CeO_2 + 2H_2SO_4 (d\bar{a}c) = Ce(SO_4)_2 + 2H_2O$$

 $CeO_2 + 3HNO_3 (d\bar{a}c) = CeOH(NO_3)_3 + H_2O$

Ceri đioxit được dùng làm bột mài bóng đồ bằng thủy tinh.

Xeri đioxit được điều chế bằng tác dụng trực tiếp của các nguyên tố hoặc nhiệt phân hidroxit và một số muối của Ce(III) khi có mặt khí oxi.

Ví du:

$$4Ce(OH)_3 + O_2 = 4CeO_2 + 6H_2O$$

Xeri(IV) hidroxit (Ce(OH)₄) là chất dạng kết tủa nhầy, màu vàng, thực tế không tan trong nước và có thành phần biến đổi CeO₂.xH₂O. Nó là bazơ yếu, yếu hơn Ce(OH)₃ cho nên muối của Ce(IV) bị thủy phân rất mạnh khi tan trong nước. Do tính bazơ yếu đó, nó có thể kết tủa trong dung dịch có môi trường axit mạnh pH∼1, trong khi Ln(OH)₃ kết tủa trong môi trường có pH từ 6,5 (đối với Lu(OH)₃) đến ~8 (đối với La(OH)₃). Điều kiện kết tủa khác nhau này được dùng để tách xeri ra khỏi các nguyên tố đất hiếm khác. Xeri là nguyên tố phổ biến nhất trong các đất hiếm, thường chiếm trên 50% tổng lượng đất hiếm. Việc tách xeri ra trước làm cho quá trình phân chia các đất hiếm còn lại trở nên ít phức tạp hơn nhiều. Khi thêm KMnO₄ hay (NH₄)₂S₂O₈ vào dung dịch axit có chứa các ion đất hiếm, Ce(III) sẽ biến thành Ce(IV). Khi thêm NH₃ để nâng pH của dung dịch, Ce(OH)₄ sẽ kết tủa trước và có thể tách ra để dàng. Cần chú ý rằng, nếu dùng dung dịch H₂O₂ để oxi hóa Ce(III) đến Ce(IV) rồi thêm NH₃ thì lắng xuống kết tủa màu đỏ-da cam là một hợp chất peoxi của xeri(IV) có công thức Ce(OH)_{4-x}(O−OH)_{x-}yH₂O. Phản ứng này được dùng để phát hiện ion Ce³⁺ trong dung dịch.

Xeri(IV) hidroxit tan trong axit tạo nên dung dịch có màu đa cam của ion [Ce(H₂O)_n]⁴⁺.

Giống như CeO2, nó có thể tan trong kiểm nóng chây tạo nên xerat:

$$2NaOH + CeO_2 = Na_3CeO_3 + H_2O$$

Xeri(IV) hidroxit cũng như CeO2 là chất oxi hóa tương đối mạnh.

Ví du:

$$2Ce(OH)_4 + 8HCl = 2CeCl_3 + Cl_2 + 8H_2O$$

Xeri(IV) hidroxit được tạo nên khi kiểm tác dụng với dụng dịch muối của xeri(IV).

 $Mu\delta i$ của xeri(IV). Muối của xeri(IV) không có nhiều. Thường gặp hơn hết là CeF_4 ở dạng tinh thể màu trắng, $Ce(SO_4)_2$ ở dạng tinh thể màu vàng, $Ce(CH_3COO)_4$ ở dạng tinh thế màu đỏ. Muối của Ce(IV) tương tự với muối của Zr(IV) và Hf(IV). Muối của Ce(IV) thường không bồn, bị thủy phân rất mạnh trong nước nên ion Ce^{4+} chỉ tồn tại trong dụng dịch có môi trường axit mạnh. Trong các muối kết tinh được từ dụng dịch nước, muối bền hơn là muối kếp $(NH_4)_2|Ce(NO_3)_6|.2H_2O$. Nó là chất dạng tinh thể màu đỏ-da cam, trong đó ion Ce^{4+} có số phỏi trí bằng 12, mỗi ion NO_3 là một phối tử hai càng, liên kết với ion Ce^{4+} qua hai nguyên tử O.

Các muối của Ce(IV) đều có tính oxi hóa tương đối mạnh ($E^{\circ}_{Ce^{1}-Ce^{3}}$ =1,61V). Trong hóa học phân tích, phản ứng khử Ce^{4+} đến Ce^{3+} được dùng để chuẩn độ các chất khử. Đây là phương pháp chuẩn độ bằng Ce(IV) tương tự phương pháp chuẩn độ bằng I_2 đã xét trước đây.

Xeri(IV) sunfat được điều chế bằng cách hòa tan CeO_2 hay $Ce(OH)_4$ trong dung dịch H_2SO_4 đặc và nóng.

Hợp chất của Ln(II)

Trạng thái oxi hóa +2 là đặc trưng đối với Eu và một phần đối với Sm và Yb. Các hợp chất của Eu(II), Sm(II) và Yb(II) tương tự với hợp chất của Ca, Sr và Ba. Các oxit LnO và hidroxit $\text{Ln}(OH)_2$ là hợp chất có tính bazơ. Các muối cacbonat và sunfat của Ln(II) đồng hình với muối tương ứng của Sr(II) và Ba(II) và đều tan ít. Muối clorua là thường gặp hơn hết, tan trong nước cho dụng dịch có màu vàng-lục hay không màu của ion $[\text{Eu}(H_2O)_n]^{2+}$, màu đó-máu của $[\text{Sm}(H_2O)_2]^{2+}$ và màu vàng của $[\text{Yb}(H_2O)_n]^{2+}$. Những ion này đều dễ bị oxi không khí oxi hóa, Sm(II) và Yb(II) còn có thể tác dụng với nước giải phóng khí H_2 .

Các muối clorua của Eu(II), Sm(II) và Yb(II) có thể điều chế bằng cách điện phân dung dịch axetat của Ln(III) với điện cực âm bằng thủy ngân và điện cực dương bằng platin hay niken. Ở điện cực âm tạo nên hỗn hống lantanoit. Hỗn hống lantanoit tác dụng với dung dịch HCl tao nên muối đihalogenua:

$$Ln(Hg) + 2HCl = LnCl_1 + Hg + H_2$$
 ($\mathring{\sigma}$ đây $Ln=Eu$, Sm và Yb)

Ngoài phương pháp điện phân, người ta còn dùng phương pháp nhiệt-kim loại.

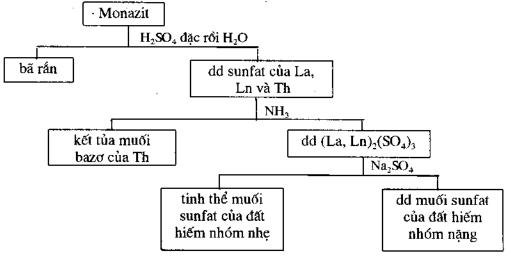
$$2LnCl_3 + Ca = 2LnCl_2 + CaCl_2$$

Đối với các lantanoit khác ngoài Eu, Sm và Yb, phản ứng nhiệt-kim loại này tạo nên kim loại lantanoit.

Tách riêng từng nguyên tố đất hiếm

Các nguyên tố đất hiểm có tính chất rất giống nhau và cùng tồn tại trong các khoáng vật cho nên việc phân chia chúng thành từng nguyên tố riêng là rất khó khăn.

Nguồn nguyên liệu chính để điều chế các kim loại đất hiếm là cát monazit. Ở đây chúng ta xét quá trình chế hóa cát monazit để tách riêng từng đất hiếm:


Tuyển quặng. Khoáng vật monazit ở phân tán trong nhiều nham thạch nhưng có tỉ khối lớn, trơ về hóa học và do sự phong hóa các nham thạch ở trong thiên nhiên, monazit được tập trung lại trong cát sông hoặc cát biển, trong cát này thường có những khoáng vật khác như inmenit, caxiterit ... Tại nơi khai thác quặng, người ta dùng phương pháp trọng lực kết hợp với phương pháp từ để tuyển sơ bộ quặng. Tinh quặng này được chuyển về xí nghiệp và tuyển tiếp bằng phương pháp từ và phương pháp điện. Nghiên tinh quặng thu được và bằng phương pháp tuyển nổi, thu được tinh quặng monazit trên 90%.

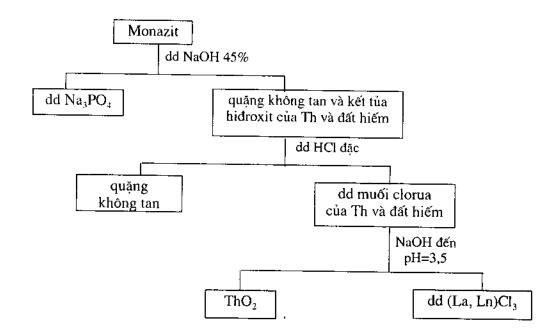
Chế hóa hóa học monazit. Trong công nghiệp, người ta thường hay chế hóa monazit bằng H₂SO₄ hoặc bằng NaOH.

Chế hóa bằng axit. Đun nóng bột mịn của tinh quặng monazit trong axit sunfuric 93% (lấy dư gấp 3 lần) ở 200-240°C trong 3-4 giờ. Những phản ứng xảy ra là:

$$2LnPO_4 + 3H_2SO_4 = Ln_2(SO_4)_3 + 2H_3PO_4$$

 $Th_3(PO_4)_4 + 6H_2SO_4 = 3Th(SO_4)_2 + 4H_3PO_4$
 $ThSiO_4 + 2H_2SO_4 = Th(SO_4)_2 + SiO_2 + 2H_2O$

Hòa tan sản phẩm vào nước ở nhiệt độ dưới 20°C và tiếp tục chế hóa theo sơ đồ (đã đơn giản hóa):



14.8

Chế hóa bằng kiểm. Đun nóng bột mịn của tính quặng monazit trong dung dịch NaOH 45% (lấy dư gấp 3 lần) ở 150°C. Những phản ứng xảy ra là:

$$2LnPO_4 + 6NaOH = 2Ln(OH)_3 + 2Na_3PO_4$$

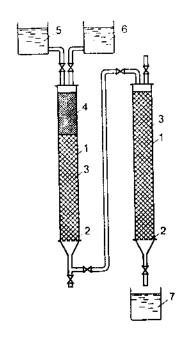
 $Th_3(PO_4)_4 + 12NaOH = 3Th(OH)_4 + 4Na_3PO_4$

Pha loãng nước, đun sôi trong một giờ và lọc. Rửa kết tủa hiđroxit, hòa tan trong dung dịch axit clohiđric đặc và tiếp tục chế hóa theo sơ đồ (đã đơn giản hóa):

Tách riêng nguyên tố. Những hỗn hợp hợp chất của nguyên tố đất hiếm thu được khi chế hóa quặng monazit được tách riêng thành hợp chất của từng nguyên tố bằng những phương pháp chủ yếu như kết tinh phân đoạn muối kép, trao đổi ion và chiết những phức chất. Tùy theo hỗn hợp chất ban đầu, người ta có thể dùng một hay kết hợp một vài phương pháp đó để tách riêng.

Khi sản xuất với quy mô lớn, người ta thường dùng tributyl photphat $((C_4H_9)_3PO_4)$ để chiết ion kim loại đất hiểm từ dung dịch muối nitrat trong môi trường axit nitric. Tributyl photphat (viết tắt là TBP) vừa là dung môi hữu cơ, vừa là phối tử tạo phức khá tốt với ion đất hiểm. Phức chất có thành phần $Ln(NO_3)_3$.3TBP và có độ bền tăng lên theo khối lượng nguyên tử của kim loại. Để giảm độ nhớt của hệ chiết, tributyl photphat được pha loãng bằng một dung môi trơ, ví dụ như dầu hỏa. Quá trình chiết được tiến hành liên tục, sản phẩm thu được cũng như dung môi không bị biến đổi.

Khi sản xuất với quy mô nhỏ và khi cần sản phẩm có độ tinh khiết cao, người ta dùng phương pháp trao đổi ion. Dùng hai cột đựng nhựa trao đổi ion (cationit) đã nghiền nhỏ, nối với


nhau (Hình 70): cột thứ nhất đựng nhựa đã bão hòa ion Ln³⁺ và cột thứ hai dựng nhựa đã bão hòa ion Cu²⁺. Ái lực của các ion Ln³⁺ đối với cationit giảm xuống từ Ce đến Lu³⁺ và ái lực đó rất gần với nhau nên không đủ để phân chia được hỗn hợp đất hiếm ở trên nhựa.

Khi cho dung dịch muối triamoni của EĐTA (không quá 0,015M) đi qua cột thứ nhất, ion Ln³+ tách ra khỏi nhựa đi vào dung dịch do tạo nên phức chất bền với EĐTA:

$$\overline{\text{Ln}^{3+}}$$
 + (NH₄)₃HEĐTA \iff 3 $\overline{\text{NH}_{4}^{+}}$ + H[Ln(EĐTA)]

(vạch ngang ở trên ion chỉ rằng ion đó được hấp thụ trên cationit).

Dung dịch (NH₄)₃HEĐTA được gọi là dung dịch rửa: EĐTA rửa các ion Ln³⁺ ra khỏi nhựa. Khi dung dịch rửa đi qua cột thứ nhất, sự rửa ion Ln³⁺ xảy ra theo thứ tự ứng với độ bền của anion phức [Ln(EĐTA)]⁻. Độ bền đó như đã biết, tăng lên từ Ce³⁺ đến Lu³⁺.Như vậy, trong dung dịch rửa chảy ra

Hình 70. Sơ đồ của thiết bị trao đối ion 1. Cột. 2. Lưới. 3. Nhưa, 4. Lớp trên của nhựa đã bão hòa ion Ln¹⁺, 5. Dung dịch Ln³⁺, 6. Dung dịch rửa, 7. Nước lọc

ở phía dưới của cột, hỗn hợp các cation ${\rm Ln}^{3+}$ đã được phân chia thành vùng khá rõ nét và chảy ra với một tốc độ xác định. Dung dịch này chứa ${\rm H[LnEDTA)}]$ và $({\rm NH_4})_3{\rm HEDTA}$.

lon Cu²⁺ có khả năng tạo với EĐTA phức chất bền hơn so với đa số ion Ln³⁺. Khi dung dịch thoát ra từ cột thứ nhất chảy vào cột thứ hai, ion Cu²⁺ đi vào dung dịch, còn ion Ln³⁺ bị đẩy ra khỏi phức chất và được nhựa hấp thụ:

$$3\overline{\operatorname{Cu}^{2+}}$$
 + $2H[\operatorname{Ln}(\operatorname{EDTA})]$ = $2\overline{\operatorname{Ln}^{3+}}$ + $\operatorname{Cu}_3(\operatorname{HEDTA})_2$

Quá trình này cũng xảy ra theo thứ tự ứng với độ bền của anion phức [Ln(EĐTA] và tạo nên trên nhựa vùng hấp thụ của từng ion Ln³+ rõ nét hơn nhiều.

Khi dung dịch rửa tiếp tục đi qua cột thứ hai, nước lọc thu được ở phía dưới của cột này được hứng riêng từng phân đoạn. Mới đầu trong nước lọc chỉ có ion Cu²+. Sau khi tất cả ion Cu²+ bị rửa ra khỏi nhựa, những phân đoạn của riêng từng ion Ln³+ xuất hiện theo thứ tự ion nặng thoát ra trước ion nhẹ (nghĩa là ứng với thứ tự độ bền của anion phức).

Kết tủa ion Ln³+ trong các phân đoạn nước lọc bằng axit oxalic rồi nung lantanoit(III) oxalat để được oxit.

CHƯƠNG XII

CÁC NGUYÊN TỐ ACTINOIT

Các nguyên tố actinoit hay họ actini có số thứ tự nguyên tử từ 90 đến 103, được xếp vào cùng một ô với actini (số thứ tự 89), bao gồm các nguyên tố: thơi (Th), protactini (Pa), uran (U), neptuni (Np), plutoni (Pu), amerixi (Am), curi (Cm), heckeli (Bk), califoni (Cf), ensteni (Es), fecmi (Fm), mendelevi (Md), nobeli (No) và laurenxi (Lr). Một số đặc điểm của các actinoit cùng với Ra, Ac và Ku là những nguyên tố đứng trước, đứng trong cùng ô và đứng sau actinoit, được trình bày trong bảng 28.

Bảng 28 . Một số đặc điểm của các nguyên tố actinoit (An)

Nguyên tố	Số thứ tự nguyên tử	Cấu hình electron của	Bán kính nguyên tử,	Bán kính ion An ³⁺	Bán kính ion An ⁴⁺	Thế điện c	cực chuẩn, /
		nguyên tử	Å			An ³⁺ /An	An ⁴⁺ /An
Ŕа	88	$7s^2$	2,35	_	· -	-	- .
Ac	89	6d ¹ 7s ²	2,03	1,11		-2,6	
Th	90	$6d^27s^2$	1,80	1,08	0,94		-1,899
Pa	91	$5f^26d^47s^2$	1,62	1,05	0,90	-1,95	-1,7
U	92	$5f^36d^17s^2$	1,53	1,03	0,89	-1,798	-1,5
Np	93	5f ⁵ 7s ²	1,50	1,01	0,87	-1,856	-1,355
Pu	94	$5f^67s^2$	1,62	1,00	0,86	-2,031	-1,272
Am	95	$5f^77s^2$	-	0,99	0,85	-2,38	-1,24
Cm	96	5f ³ 6d ¹ 7s ²		0,98	0,83		
Bk	97	5f86d17s2		_	_	_	_
Cf	98	$5f^{10}7s^2$	ـــــ	· _	_		_
Es	99	5f ¹¹ 7s ²	_	-	-		_
Fm	100	$5f^{12}7s^2$	_	_	_	_	_
Md	101	$5f^{13}7s^2$		-	_	_	_
No	102	5f ¹⁴ 7s ²			<u> </u>		
Lr	103	5f ¹⁴ 6d ¹ 7s ²					- -
Ku	104	6d ² 7s ²	<u> </u>				

Theo những dữ kiện quang phổ, trong nguyên tử những nguyên tố nặng nhát của bảng tuần hoàn, các obitan 5f, 6d và 7s có năng lượng rất gần nhau. Bởi vậy, khó xác định dứt khoát được cấu hình electron của nguyên tử. Ví dụ như đối với protactini, cấu hình electron của nguyên tử ở trạng thái cơ bản thường được viết là [Rn] 5f²6d¹7s², trạng thái này rất gần với trạng thái có cấu hình 6d³7s², 5f¹6d²7s² và 5f³7s². Vậy trạng thái nào thực sự là trạng thái cơ bán?

Do các obitan 6d và 5f có năng lượng rất gần nhau, các nguyên tố nhóm thơi (Th-Cm) có đặc tính vừa của nguyên tố f vừa của nguyên tố d. Khi các obitan 5f được điển thêm electron thứ hai, cấu hình electron của nguyên tử càng bển hơn và việc chuyển electron 6d sang 5f trở nên càng khó khăn hơn. Bởi vậy, các nguyên tố nhóm beckeli (Bk-Lr) có đặc tính của nguyên tố f điển hình và chúng giống với các lantanoit. Như vậy, tương tự với các lantanoit, các actinoit cũng có thể chia thành hai nhóm: nhóm thori và nhóm beckeli.

Thật ra tên gọi actinoit đặt ra không được đạt như tên gọi lantanoit. Những actinoit đứng ngay sau actini không giống mấy với actini. Actini chỉ thể hiện trạng thái oxi hóa +3, trong khi thori, protactini và uran (một mức độ ít hơn) có thể coi là những nguyên tố cùng nhóm với Hf. Ta và W tương ứng; từ amerixi trở đi, sự giống với lantanoit mới tăng lên.

Uran, neptuni, plutoni và amerixi giống với nhau nhiều hơn và có trạng thái oxi hóa khá bên biến đổi từ +3 đến +6.

Curi giống với gađolini vì có các obitan 5f được điền đủ một nửa số electron. Tuy nhiên, khác với gađolini, curi còn tạo nên hợp chất trong đó nó có số oxi hóa +4. Amerixi, đứng trước curi tạo nên hợp chất bền ứng với số oxi hóa +2 giống với europi. Beckeli, đứng sau amerixi, tạo nên hợp chất bền ứng với số oxi hóa +4.

Fecmi và laurenxi giống với lantanoit.

Tất cả các actinoit đều là nguyên tố phóng xạ. Hạt nhân càng nặng càng dễ phân rã phóng xạ tự nhiên. Nếu chu kì bán rã phóng xạ tự nhiên của U là vào khoảng 10^{16} năm thì của Pu là 10^{10} năm, Cm là 10^6 năm, Cf vào khoảng 1 năm, Fm là một vài giờ, của ²⁵⁶No, đồng vị bền nhất của nobeli là 1500 giây.

Nét nổi bật trong hợp chất và phức chất của actinoit giống lantanoit là có số phối trí cao, có thể đến 12.

ĐƠN CHẤT

Tính chất lí hóa học

Ở dạng đơn chất, thori, protactini, uran, neptuni, plutoni, amerixi, curi là những kim loại màu trắng bạc, trở nên xám đen ở trong không khí có tỉ khối lớn, có nhiệt độ nóng chảy và nhiệt độ sôi khá cao:

Kim loại	Th	Pa	U	Np	Pu	Am	Cm
Tí khối	11.7	15,4	0,61	20,4	19,7	11,9.	13.5
Nđnc., °C	1750	1575	1133	. 637	640	1200	1340
Nđs., °C	4200	4300	3860	3900	3235	2600	_

Về hóa học, các actinoit đều hoạt động. Trong không khí, đa số các actinoit bị oxi hóa dẫn bởi oxi và nitơ, dạng bột mìn có tính tự cháy. Khi đốt cháy trong khí oxi, chúng tạo nêm những hợp chất ứng với số oxi hóa bền nhất của nguyên tố.

Ví dụ:

Th +
$$O_2$$
 = Th O_2
 $4Pa + 5O_2$ = $2Pa_2O_5$
 $3U + 4O_2$ = U_3O_8 (hay $UO_2.2UO_3$)
 $Pu + O_2$ = PuO_2

Khi đun nóng, các actinoit tác dụng với đại đa số nguyên tố không-kim loại. Thori, uran và actinoit khác tác dụng dễ dàng với hiđro tạo thành hiđrua có thành phần biến đổi giữa AnH₃ và AmH₄ và khá hoạt động về mặt hóa học. Ví dụ ở 250°C, uran tác dụng với khí hiđro tạo nên chất bột màu đen có tính tự chảy:

$$2U + 3H_2 = 2UH_3$$

Các actinojt tạo hợp kim với nhiều kim loại và trong đó thường tạo nên những hợp chất giữa-kim loại.

Trong dãy điện thế, các actinoit đứng xa trước hiđro nên tác dụng với nước và dễ tác dụng với axit. Tuy nhiên với nước, phản ứng trở nên phức tạp. Ví dụ uran tác dụng với hơi nước tao thành đioxit và khí hiđro:

$$U + 2H_2O = UO_2 + 2H_2$$

hiđro tác dụng với kim loại tạo thành UH_3 rồi UH_3 có thể tác dụng với hơi nước theo phản ứng:

$$2UH_3 + 4H_5O = 2UO_2 + 7H_2$$

Các actinoit tác dụng nhanh với axit clohidric đặc tạo nên sản phẩm không tan màu đen (đối với Th và U) và màu trắng (đối với Pa). Sản phẩm màu đen của Th và U có thành phần gần đúng là HThO(OH) và UH(OH)₂. Phản ứng với các dung dịch axit khác (không có tính oxi hóa) xảy ra chậm. Axit nitric đặc thụ động hóa các kim loại Th, U và Pa nhưng khi có mặt ion F, tính thụ động của kim loại biến mất. Cơ chế của quá trình đó chưa được xác định rõ nhưng đây là quá trình tốt nhất để hòa tan các kim loại Th, U và Pa.

Các actinoit không tác dụng với kiểm ở điều kiện thường.

Khác với các lantanoit, trong hợp chất các actinoit có nhiều trạng thái oxi hóa từ +2 đến +7.

Trạng thái oxi hóa +3 là trạng thái chung nhất cho các actinoit trừ Th và Pa. Trạng thái oxi hóa này rất đặc trưng cho Ac, Am và những nguyên tố sau Am. Tính chất hóa học của ion An³⁺ giống với tính chất hóa học của ion Ln³⁺, ví dụ như các triflorua đều kết tủa từ dung dịch axit nitric loãng. Có bán kính tương đương với nhau nên hai nhóm ion đó giống nhau về khả năng tạo thành phức chất và hằng số bền của phức chất.

Trạng thái oxi hóa +4 đặc trưng nhất đối với Th. Đối với Pa, U, Np và Bk, những cation An⁴⁺ tồn tại trong dung dịch, trong khi đối với Am và Cm, người ta chỉ biết được trạng thái oxi hóa +4 ở trong các anion phức floro. Những nguyên tố ở trạng thái oxi hóa +4 đều tạo nên hợp chất rắn. Các cation An⁴⁺ có thể kết tủa từ dung dịch có tính axit ở dạng iođat, oxalat, photphat và florua. Những nguyên tố từ Th đến Bk tạo nên đioxit có kiến trúc tinh thể kiểu florit.

Trạng thái oxi hóa +5 đặc trưng chủ yếu cho Pa, về mặt này Pa giống với Ta. Những actinoit từ U đến Am chỉ có ít hợp chất ứng với trạng thái oxi hóa đó, trong số đó thường gặp hơn là hợp chất của ion AnO_2^+ .

Trạng thái oxi hóa +6 thể hiện ở U, Np và Pu. Hợp chất đơn giản đuy nhất của chúng ở trạng thái oxi hóa đó là hexaflorua. Ngoài ra, thường gặp hơn hết là hợp chất của ion AnO_2^{2+} , trong đó An là U, Np, Pu và Am.

Trong dung dịch, độ bền của cation AnO_2^+ giảm xuống theo thứ tự Np-Am-Pu-U và độ bền của ion AnO_2^{2+} giảm xuống theo thứ tự U-Np-Pu-Am.

Trạng thái oxi hóa +2 và +7 rất ít gặp.

Trạng thái thiên nhiên và phương pháp điều chế

Trong các actinoit, chỉ Th, U và Pa tổn tại trong vỏ Quả Đất, các nguyên tố còn lại không gặp trong thiên nhiên (trừ lượng vô cùng nhỏ của Np và Pu) và được tổng hợp nhân tạo. Thori thiên nhiên gồm có 6 đồng vị: ²²⁷Th, ²²⁸Th, ²³⁰Th, ²³¹Th, ²³¹Th và ²³⁴Th, uran thiên nhiên gồm có ba đồng vị: ²³⁸U (chiếm 99,28%), ²³⁵U (chiếm 0,74%) và ²³⁴U (chiếm 0,0055%). Những đồng vị ²³²Th (có chu kì bán rã T_{1/2} = 1,4.10¹⁰ năm), ²³⁵U (T_{1/2} = 7.10⁸ năm) và ²³⁸U (T_{1/2} = 4,5.10⁹ năm) có thời gian sống khá dài nên có thể cùng tồn tại với Trái Đất trong suốt 4,5-5 tỉ năm. Những đồng vị này đứng đầu ba *dẫy phóng xạ* tự nhiên của các nguyên tố nặng. Sự phát tia α, tia β trong những dãy phóng xạ đó kết thúc bằng sự tạo thành ba đồng vị bền của chì là ²⁰⁸₈₂ Pb, ²⁰⁷₈₂ Pb và ²⁰⁶₈₂ Pb (tương ứng). Tất cả những nguyên tố phóng xạ đứng sau Bi (số thứ tự 83) ở trong bảng tuần hoàn đều được tạo nên trong ba dẫy phóng xạ đó.

Thori và uran là những nguyên tố phân tán nhưng có phổ biến hơn Ag, Hg và Cd, còn Pa là nguyên tố hiếm. Trữ lượng trong vó Quả Đất của Th là 7,5.10⁻⁵%, của U là 2.10⁻⁵% và của Pa là 8.10⁻¹²% tổng số nguyên tử.

Những khoáng vật quan trọng của Th là thorit (ThSiO₄) và cát monazit, của uran là uraninit (UO₂₋₃) và uranothorit (silicat của Th và U). Protactini thường đồng hành với uran trong khoáng vật. Trên thế giới, những nước có giàu khoáng vật của Th là Ấn Độ, Nam Phi, Brazin, Australia và Malaixia. Quặng thori thường chứa dưới 10% ThO₂, cá biệt có quặng chứa đến 20% ThO₂. Những nước có giàu khoáng vật của U là Mỹ, Canađa, Nam Phi và Australia. Quặng uran thường chỉ chứa 0,1% U. Nước ta có cát monazit ở lẫn với inmenit, zicon, rutin là những sa khoáng ven biển ở các tỉnh Hà Tĩnh và Bình Định, có điểm quặng uraninit ở Pà Lừa (Quảng Nam) chứa đến 0,4% U.

Năm 1789, Chaprot phát hiện được nguyên tố *uran* ở trong khoáng vật pitchblende, lúc bấy giờ được coi là quặng oxit của các kim loại kẽm, sắt và vonfram. Tên gọi uran lấy tên của hành tinh *Uranus* được phát hiện trước đó mấy năm (nặm 1771). Mãi đến năm 1841, Peligot lần đầu tiên mới điều chế được uran kim loại bằng cách dùng kali khử uran tetraclorua.

Năm 1828, Beczeliuyt chế được oxit của một nguyên tố mới từ một quặng ở Na Uy (ngày nay quặng đó được gọi là thorit) và ông đặt tên là *thoria*, lấy tên của vị thần chiến tranh *Thorr* của xứ Scanđinavi. Sau đó ông dùng kali khủ muối tetraclorua và thu được *thori*.

Năm 1917, hai nhà khoa học người Đức là Han và Meitner độc lập với hai nhà khoa học người Anh là Soddy và Cranston đã phát hiện được đồng vị ²³¹Pa là sản phẩm trung gian trong dãy phân rã phóng xạ của ²³⁵U:

$$^{235}_{92}U \xrightarrow{\alpha} ^{231}_{90}Th \xrightarrow{\beta^{-}} \xrightarrow{231}_{91}Th \xrightarrow{\alpha} \xrightarrow{227}_{89}Ac$$

Tên gọi *protactini* xuất phát từ chữ *protos actis*, tiếng Hi Lạp nghĩa là tia đầu tiên. Vì trữ lượng rất thấp trong thiên nhiên cho nên mãi đến năm 1960 các nhà khoa học của Viện Năng lượng Nguyên tử Anh mới tách được 130g Pa từ 60 tấn bã thu được trong quá trình tách uran từ quặng uraninit.

Từ năm 1891, khi nhà hóa học Venbach sáng chế mạng đèn măng sông, việc khai thác thơi từ cát monazit được phát triển mạnh. Hỗn hợp gồm 99% ThO_2 và 1% UO_2 ở trên mạng đèn măng sông khi được đốt nóng tỏa ra ánh sáng trắng và chói, trong đó UO_2 xúc tác quá trình đốt cháy khí, còn ThO_2 vì kém dẫn nhiệt nên làm cho những hạt UO_2 được đốt nóng và tỏa sáng mạnh. Lượng thơi được khai thác nhiều đã kéo theo việc nghiên cứu và sử dụng các đất hiếm vì cát monazit thường chứa khoảng 12% ThO_2 và Ln_2O_3 .

Ngày nay, thori kim loại được sản xuất mỗi năm hàng trăm tấn bằng cách dùng Ca hay Mg khủ ThO₂ hay ThCl₄ ở nhiệt độ 500÷700°C trong khí quyển agon. Oxit ThO₂ được tách ra khi chế hóa cát monazit (xem các lantanoit). Kim loại thori tinh khiết được điều chế theo phương pháp Aken-Đơ Boê.

Trước kia, uran kim loại chỉ được sản xuất hàng kilogam dùng để nghiên cứu khoa học. Hợp chất của uran được dùng để tạo màu cho thủy tinh và đồ gốm. Quặng uran là nguồn để tách nguyên tố phóng xạ Ra dùng chữa trị bệnh ung thư.

Năm 1939, hai nhà hóa học Đức là Han và Stasman phát hiện ra *hiện tượng phân chia* hạt nhân của đồng vị ²³⁵U khi được chiếu notron:

$$^{235}_{07}U + ^{1}_{0}n \rightarrow ^{93}_{36}Kr + ^{141}_{56}Ba + 2^{1}_{0}n$$

Quá trình phân chia hạt nhân đó sinh ra một lượng khổng lồ năng lượng. Từ đó đến nay uran được dùng làm nhiên liệu của lò phản ứng hạt nhân. Lượng kim loại uran được sản xuất hàng nằm trên thế giới lên tới hàng trăm ngàn tấn.

Quảng uraninit sau khi đã tuyển được chế hóa với axit sunfuric khi có mặt MnO2:

$$UO_3 + H_2SO_4 = UO_2SO_4 + H_2O$$

 $UO_2 + MnO_2 + 2H_2SO_4 = UO_2SO_4 + MnSO_4 + 2H_2O$

Để tách uran, người ta có thể cho dung dịch chứa UO_2SO_4 đi qua nhựa trao đổi ion. Dùng dung dịch HNO₃ loãng để rửa nhựa đã hấp thụ ion UO_2^{2+} rồi dùng tributylphotphat (TBP) trong dầu hỏa hay trong hexan để chiết $UO_2(NO_3)_2$ ở trong dung dịch thu được khi rửa nhựa. Cuối cùng dùng dụng dịch HNO₃ loãng để tách $UO_2(NO_3)_2$ ra khỏi tributylphotphat và dầu hỏa (hay hexan). Nhiệt phân muối uranyl nitrat ở 350°C, thu được UO_3 . Dùng khí H_2 khử UO_3 về UO_2 . Muốn chuyển UO_2 thành kim loại U, người ta chuyển UO_2 thành UF_4 rồi khử UF_4 bằng kim loại Ug theo các phản ứng:

$$UO_2 + 4HF \stackrel{500°C}{=} UF_4 + 2H_2O$$

 $UF_4 + 2Mg \stackrel{700°C}{=} U + 2MgF_2$

Magie tuy khử kém hơn canxi nhưng dễ loại khỏi uran kim loại khi đun nóng ở trong chân không.

Ngoài ra uran kim loại còn có thể điều chế bằng cách điện phân hỗn hợp nóng chảy của $K[UF_5]$, $CaCl_2$ và NaCl.

Tổng hợp nhân tạo những actinoit đứng sau uran

Những nguyên tố đứng sau uran không tồn tại trong thiên nhiên. Chúng được tổng hợp nhân tạo trong những năm 1940÷1961 bằng cách bắn những hạt notron, đotron, anpha có năng lượng vào khoảng 30–40 MeV và những ion có điện tích lớn như 10 B³+, 12 C⁴+... có năng lượng vào khoảng 130eV vào đồng vị của những nguyên tố nặng ở trong lò phản ứng hạt nhân. Lượng tổng hợp được của Np và Pu tính bằng kilogam, của Am và Cm tính bằng chục gam, của Bk và Cf tính bằng miligam, của Es tính bằng microgam, của các actionoit còn lại tính bằng số nguyên tử. Bảng 28 liệt kê tên tác giả, năm và phương pháp tổng hợp nhân tạo các nguyên tố actinoit sau uran và nguồn gốc tên gọi của chúng.

Tổng hợp nhân tạo các actinoit sau uran

Tổng h	iợp nhân tạo các actin	- T	1 6 1 6 1 1 1	Nguồn gốc tên gọi
lguyên tố 3 Neptuni, I	Tác giả E. Mc Millan, P.	Năm 1940	Phương pháp tổng hợp bắn ²³⁸ ₉₂ U bằng ¹ ₀ n	hành tinh Neptun
p / 4 Plutoni, S u]	Abelson	1940	bắn ²³⁸ U bằng ² H	hành tinh Pluto (phát hiện được sau Neptun) châu Mỹ (America)
Am	G. Seaborg, R. James, L. Morgan, A. Ghiorso		bắn ²³⁹ ₉₄ Pu bằng ¹ ₀ n	ông bà Quiri (P và
96 Curi, Cm	G. Seaborg, R. James, A. Ghiorso	1944	bắn ²³⁹ Pu bằng ⁴ ₂ He	M. Curie)
97 Beckeli, Bk	S. Thomson, A. Ghiorso, G. Seaborg	1949	bắn ²⁹¹ ₉₅ Am bằng ⁴ ₂ He	thành phố Beckeli (Mỹ)
98 Califoni, Cf		. 1950	bắn ²⁴² ₉₆ Cm bằng ⁴ ₂ He	bang Califonia (Mỹ)
99 Ensteni, Es	Các nhà khoa học c Berkeley, Argonne v Los Alamos	à	mảnh vỡ của phản ứng n nhiệt nhân đầu tiên kh chiếu nơtron nhanh vào ura	ii (định luật tương n đối)
100 Feemi Fm	Các nhà khoa học Berkeley, Argonne v Los Alamos	ά 1952 'à .	månh vỡ của phản ứng nổ nhiệt nhân đầu tiên kh chiếu nơtron nhanh vào uran	i (người xây dựng lợ
101 Menđelevi, Md	741	B. 1955 S. org	bắn ²⁵³ ₉₉ Es bằng ⁴ ₂ He	ông Đimitr Mendeleep (bản tuần hoàn cá nguyên tố)
102 Nobel	Ii, A. Ghiorso, Sikkeland, J. Walte G. Seaborg	T. 195	8 bắn ²⁴⁶ ₉₆ Cm bằng ¹² ₆ C	ông Anfrêt Nobe (A. Nobel, nhà t trợ khoa học)
103 Laurenxi,	A. Ghiorso,	T. 196	bắn hỗn hợp đồng vị của bằng 10/5 B và 11/5 B	Cf ong Ecnes Laure (E. Lawrence, ngu phát minh máy g tốc)

Nhóm các nhà khoa học của trường Đại học Califonia ở thành phố Beckeli (Berkeley) đứng đầu là Xibo (G. Seaborg) đã có những đóng góp rất lớn lao vào việc tổng hợp nhân tạo các nguyên tố sau uran. Năm 1951, các ông Xibo và Milen (E. Mc Millan) đã được nhận giải thưởng Noben về hóa học.

HOP CHẤT CỦA THORI

Thori dioxit

Thori đioxit (ThO₂) là chất rắn màu trắng, có kiến trúc tinh thể kiểu florit. Nó nóng chảy ở 3050°C và là oxit kim loại khó nóng chảy nhất nên được dùng làm vật liệu chịu nhiệt, ví dụ như làm chén nung ở nhiệt độ cao.

Thori đioxit không tan trong nước, axit loãng, amoniac và cả kiểm nóng chảy.

Nó được tạo nên khi đốt cháy kim loại trong không khí ở 250°C hoặc nhiệt phân hiđroxit hay muối nitrat.

Ví du:

$$Th(NO_3)_4 = ThO_2 + 4NO_2 + O_2$$

Thori tetrahidroxit

Thori tetrahiđroxit là chất ở dạng kết tủa nhầy màu trắng, không tan trong nước và có thành phần ứng với công thức $Th(OH)_4$, xH_2O . Nó là hiđroxit thật sự, trong đó các ion Th^{4+} kết hợp với nhau qua cầu nổi OH tạo thành mạch dài:

Ở 500°C, nó mất nước biến thành đioxit ThO₂. Nó không tác dụng với kiềm và amoniac. Khi mới điều chế, nó hấp thụ khí CO₂ tạo thành ThOCO₃. Thori tetrahiđroxit thể hiện tính bazơ tương đối yếu, tan trong dung dịch axit tạo thành muối của Th⁴⁺. Nó cũng có thể tan trong dung dịch của cacbonat, xitrat và tactrat kim loại kiềm nhờ tạo nên những phức chất.

Thori tetrahidroxit được tạo nên khi muối của Th(IV) tác dụng với dung dịch kiểm.

Ví du:

$$ThCl_{\downarrow} + 4NaOH = Th(OH)_{\downarrow} + 4NaCl$$

Muối của Th(IV)

Trong các muối của Th(IV), các muối clorua, sunfat và nhất là nitrat tan trong nước, còn các muối cacbonat, photphat, florua không tan. Những muối tan bị thủy phân. Khi kết tinh từ dung dịch nước, những muối này thường ở dạng hiđrat như $Th(NO_3)_4.4H_2O$, $Th(NO_3)_4.12H_2O$ và $Th(SO_4)_2.4H_2O$.

Thori tetrahalogenua (Th X_4). Tất cả các tetrahalogenua đều là chất rắn màu trắng, rất bền với nhiệt. Dưới đây là nhiệt độ nóng chảy và nhiệt độ sôi của chúng:

	$ThF_{\scriptscriptstyle 4}$	$ThCl_4$	$ThBr_4$	Thl_4
Nđnc., °C	1111	770	679	566
Nđs., ℃	_	921	857	837

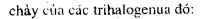
Nhiệt độ nóng chảy của tetrahalogenua rất thấp hơn so với ThO_2 chỉ cho thấy tinh thể của chúng có kiến trúc phân tử.

Thori tetraflorua không tan trong nước, các halogenua khác tan dễ. Những muối tan bị thủy phân, ví du như dung dịch ThCl₄ khi dun sôi tạo nên kết tủa ThOCl₂:

$$ThCl_4 + H_2O = ThOCl_2 + 2HCl$$

Thori tetrahalogenua được điều chế bằng tác dụng của ThO₂ với axit halogenhiđric. Riêng thori tetractorua còn có thể điều chế theo phản ứng:

$$ThO_2 + CCl_4 \stackrel{600^{\circ}C}{=} ThCl_4 + CO_2$$


HƠP CHẤT CỦA URAN

Sơ đồ thế oxi hóa-khử:

cho thấy trạng thái oxi hóa +6 là đặc trưng nhất trong dung dịch nước các hợp chất của uran. Thế oxi hóa-khứ của các hợp chất có số oxi hóa trung gian không khác nhau nhiều cộng với khả năng dễ bị thủy phân của các hợp chất đó làm cho việc nghiên cứu dung dịch nước của các muối uran trở nên phức tạp.

Uran trihalogenua

Uran trihalogenua (UX3) là chất rắn, bền với nhiệt. Dưới đây là màu và nhiệt độ nóng

	\cdot UF ₃	UCl_3	UBr_3	UI_3
Màu	đen	lục	đỏ	đen
Nđnc., °C	1495	837	727	766

Uran triflorua không tan trong nước, các trihalogenua khác tan. Các hợp chất của uran(III) có tính khử mạnh, phân hủy nước giải phóng khí hiđro.

Ví dụ:

$$2UCl_3 + 4H_2O = 2U(OH)_2Cl_2 + H_2 + 2HCl$$

Uran triflorua và triclorua có thể điều chế bằng cách dùng nhôm khử tetrahalogenua ở nhiệt độ cao:

$$UF_4 + AI = UF_3 + AIF$$

 $3UCl_4 + AI = 3UCl_3 + AICl_3$

Các triclorua, tribromua và triiođua có thể điều chế bằng tác dụng của uran hiđrua với hiđro halogenua.

Ví du:

$$UH_3 + 3HCl = UCl_3 + 3H_2$$

Uran dioxit

Uran đioxit (UO_2) là chất rắn màu nâu thẫm, có kiến trúc tinh thể giống với ThO_2 , nóng chảy ở 2176 °C. Khi đun nóng mạnh trong không khí, nó biến thành U_3O_8 :

$$3UO_2 + O_2 \stackrel{700^{\circ}C}{=} U_3O_8$$

Nó không tan trong nước, axit loãng và kiềm nhưng tan trong dung dịch axit nitric tạo thành uranyl nitrat:

$$3UO_2 + 8HNO_3 = 3UO_2(NO_3)_2 + 2NO + 4H_2O$$

Uran đioxit được dùng cùng với uran kim loại để làm nhiên liệu cho lò phản ứng hạt nhân.

Uran đioxit được điều chế bằng cách dùng ${\rm H_2}$ hay CO khử các oxit của uran với số oxi hóa cao hơn.

· Ví du:

$$UO_3 + H_2 \stackrel{700^{\circ}C}{=} UO_2 + H_2O$$

 $U_3O_8 + 2CO \stackrel{750^{\circ}C}{=} 3UO_2 + 2CO_2$

Uran tetrahalogenua

Uran tạo nên tetrahalogenua với tất cả các halogen. Chúng đều là chất rắn, tinh thể có kiến trúc phân tử, khá bền nhiệt. Dưới đây là màu và nhiệt độ nóng chảy của chúng:

	UF_4	UCl_4	UBr_4	UI_4
Màu	luc	lục	nâu	đen
Ndnc., °C	036	590	519	506

Uran tetraflorua không tan trong nước, các tetrahalogenua khác tan trong nước và các dung môi hữu cơ. Khi tan trong nước, chúng bị thủy phân.

Các uran tetrahalogenua có thể điều chế trực tiếp từ nguyên tố hoặc điều chế từ đioxit.

Ví dụ:

$$\begin{array}{lll} U + 2F_2 &=& UF_4 & \text{($\mathring{\sigma}$ nhiệt độ thường)} \\ \\ U + 2Cl_2 &=& UCl_4 \\ \\ UO_2 + CBr_4 &=& UBr_4 + CO_2 \end{array}$$

Uran trioxit

 $Uran\ trioxit\ (UO_3)$ là chất rắn màu đa cam, ở dạng tinh thể hay vô định hình, phân hủy khi đun nóng :

$$6UO_3 \stackrel{450^{\circ}C}{=} 2U_3O_8 + O_2$$

Nó tác dụng với nước, axit và kiềm:

$$UO_3 + H_2O = UO_2(OH)_2$$

 $UO_3 + H_2SO_4 = UO_2SO_4 + H_2O$
 $UO_3 + 3Na_2CO_3 + H_2O = Na_4[UO_2(CO_3)_3] + 2NaOH$

Uran trioxit được dùng để điều chế UO₂, UF₆. Nó được tạo nên khi nhiệt phân muối uranyl nitrat hay muối amoni điuranat:

$$2UO_2(NO_3)_2 = 2UO_3 + 4NO + 3O_2$$

 $(NH_4)_2U_2O_7 = 2UO_3 + 2NH_3 + H_2O_3$

Phản ứng thứ hai cho phép điều chế UO3 tinh khiết hơn.

Oxit hốn hợp U_3O_8

Oxit hỗn hợp U_3O_8 (hay $UO_2.2UO_3$) là chất rắn màu lục thẫm gần như đen, bị phân hủy khi dun nóng trong chân không:

$$U_3O_8 = 3UO_2 + O_2$$

Khi đun nóng trong đòng khí O2, nó tạo nên UO3:

$$2U_3O_8 + O_2 = 6UO_3$$

Nó không tác dụng với nước, axit loãng, kiềm và amoniac, nhưng tác dụng với các axit sunfuric và nitric đặc.

Ví du:

$$U_3O_8 + 8HNO_3 = U(NO_3)_4 + 2UO_2(NO_3)_2 + 4H_2O_3$$

 \mathring{O} nhiệt độ cao, U_3O_8 còn tác dụng với các khí H_2 , F_2 , CO và H_2S .

Oxit U_3O_8 được dùng để điều chế UO_2 và UF_6 . Nó được tạo nên khi đốt cháy uran kim loại trong không khí hoặc bằng tác dụng của UO_2 và hơi nước:

$$3UO_2 + 2H_2O \stackrel{500^{\circ}C}{=} U_3O_8 + 2H_2$$

Uranyl hidroxit

Uranyl hidroxit $(\mathrm{UO_2(OH)_2})$ hay axit uranic $(\mathrm{H_2UO_4})$ là chất dạng tinh thể màu đó thẫm hay dạng vô định hình màu vàng. Nó không tan trong nước, phân hủy khi đun nóng:

$$UO_2(OH)_2 = UO_3 + H_2O$$

Nó là chất lưỡng tính, tính bazơ trội hơn tính axit. Nó tan trong dung dịch axit loãng tạo nên muối uranyl nhưng chi tác dụng với dung dịch kiểm đặc và amoniac:

$$UO_2(OH)_2 + 2HCI = UO_2CI_2 + 2H_2O$$

 $2UO_2(OH)_2 + 2NaOH = Na_2U_2O_7 + 3H_2O$
 $2UO_2(OH)_2 + 2NH_3 = (NH_4)_2U_2O_7 + H_2O$

Uranyl hidroxit được tạo nên khi đun sôi UO_3 trong nước hoặc khi đun nóng nhẹ dung dịch của $UO_2(NO_3)_2.6H_2O$ trong rượu etylic:

$$UO_2(NO_3)_2.6H_2O = UO_2(OH)_2 + 2HNO_3 + 4H_2O$$

Muối uranyl

Muối uranyl là muối trong đó uran(VI) ở dạng oxocation UO_2^{2+} (ion uranyl). Các muối nitrat, sunfat và clorua dễ tan trong nước và dễ kết tinh, các muối cacbonat, oxalat và sunfua không tan. Muối của uran thường dùng nhất trong phòng thí nghiệm là uranyl nitrat. Nó được tạo nên khi UO_2 hay UO_3 tan trong axit nitric. Khi kết tinh từ dung dịch nước, nó thường ở dạng hexahiđrat $UO_2(NO_3)_2.6H_2O$ có màu vàng.

Dung dịch muối uranyl trong môi trường axit (pH = 2,5÷3,5) tác dụng với H_2O_2 tạo nên kết tủa màu vàng $UO_4.2H_2O$:

$$UO_2(NO_3)_2 + H_2O_2 + 2H_2O = UO_4.2H_2O + 2HNO_3$$

Hợp chất đó được coi là đihi
đrat của uranyl peoxit ${\rm UO_2^{2+}(O_2)^{2-}.2H_2O}$.

Cation UO2 có cấu hình đường thẳng:

trong đó mỗi liên kết U-O là liên kết ba, liên kết σ và một liên kết π được tạo nên bằng hai electron độc thân của U và hai electron độc thân của O, còn một liên kết π nữa được tạo nên bởi cặp electron tự đo của O và obitan trống của U.

Đối với các nhóm CrO_2^{2+} , MoO_2^{2+} và WO_2^{2+} , người ta chỉ biết những hợp chất halogenua, ví dụ như CrO_2Cl_2 , MoO_2Cl_2 và WO_2Cl_2 . Chúng là hợp chất cộng hóa trị có cấu hình tứ diện:

$$CI$$

$$E = Cr, Mo và W$$

$$CI$$

Nhóm EO_2^{2+} trong phân tử có cấu tạo đường gãy, được tạo nên nhờ sự che phủ của các obitan lai hóa d³s của E với các obitan p của O. Hợp chất eromyl clorua là cloanhiđrit, nó thủy phân mạnh trong nước tạo nên hỗn hợp hai axit giống như sunfuryl clorua (SO_2Cl_2). Hai hợp chất molipđen và vonfram clorua thủy phân trong nước kém hơn nên những cation MoO_2^{2+} và WO_2^{2+} có thể tồn tại trong dung dịch nước có môi trường rất axit. Trong khi đó, cation UO_2^{2+} hoàn toàn bền trong dung dịch nước có môi trường axit yếu và ở dạng hexahiđrat với cấu hình chóp kép lục giác mà trục là O–U–O:

$$\begin{bmatrix} H_2O & OH_2 \\ H_2O & OH_2 \\ OH_2 & OH_2 \end{bmatrix}^{2+}$$

trong đó độ dài liên kết ba U-O là 1,9Å và độ dài của liên kết đơn U-OH2 là 2,2Å.

Ion uranyl có khả năng tạo nên nhiều phức chất, trong đó cấu hình đường thẳng của UO_2^{2+} vẫn tồn tại như bất kỳ một cation đơn của kim loại hóa trị hai. Ví dụ như phức chất $K_2[UO_2F_5]$ gồm cation K^+ và anion $UO_2F_5^2$. Anion này có cấu hình chóp kép ngũ giác mà trục là O-U-O:

với độ dài liên kết ba U-O là 1,8Å và của liên kết đơn U-F là 2,2Å.

Muối uranat

Những hợp chất UO_3 và $UO_2(OH)_2$ khi tác dụng với dung dịch kiểm mạnh và đặc hay kiểm nóng chảy tạo nên những uranat có các công thức chung là $M_2U_2O_7$, M_2UO_4 , M_4UO_5 , M_3UO_6 (trong đó M =kim loại kiểm, M' =kim loại kiểm thổ). Ví dụ những uranat sau đây có thể được tạo nên khi nấu chảy UO_3 với Li_2CO_3 :

$$2UO_3 + Li_2CO_3 = Li_2U_2O_7 + CO_2$$

 $Li_2U_2O_7 + Li_2CO_3 = 2Li_2UO_4 + CO_2$
 $Li_2UO_4 + Li_2CO_3 = Li_4UO_5 + CO_2$
 $Li_4UO_5 + Li_2CO_3 = Li_6UO_6 + CO_2$

Phương pháp nghiên cứu kiến trúc bằng tia Rơnghen chỉ ra rằng trong các uranat không có mặt những anion uranat $UO_4^{2^+}$, $U_2O_7^{2^+}$... giống như anion $CrO_4^{2^+}$, $Cr_2O_7^{2^+}$ trong các muối cromat. Những uranat này có thể được coi là những oxit hỗn hợp tạo nên bởi những bát diện UO_6 nối với nhau qua những đỉnh chung hay cạnh chung. Ví dụ như magie uranat ($MgUO_4$) được tạo nên bởi những bát diện UO_6 nối với nhau qua cạnh chung thành mạch dài:

và ion Mg²+ nằm giữa các mạch dài đó.

Tuy nhiên khác với Mo(VI) và W(VI), U(VI) không tạo nên isopolianion và heteropolianion ở trong dụng dịch.

Uran hexahalogenua

Uran tạo nên hexaflorua UF₆ và hexaclorua UCl₆. *Uran hexaflorua* là chất rắn màu trắng, nóng chảy ở 64,5°C (dưới áp suất) và thăng hoa ở 56,4°C (áp suất thường). Là chất dễ bay hơi, UF₆ được dùng để phân chia các đồng vị của uran ²³⁵U và ²³⁸U bằng phương pháp nhiệt khuếch tán. *Uran hexaclorua* là chất rắn màu lục thẫm, nóng chảy ở 177°C.

Chúng bị thủy phân mạnh trong hơi ẩm của không khí:

$$UX_6 + 2H_2O = UO_2X_2 + 4HX$$

Chúng là chất oxi hóa mạnh, tác dụng mãnh liệt với nhiều kim loại. Uran hexaflorua là một trong những tác nhân flo hóa mạnh.

Uran hexaflorua được điều chế bằng tác dụng của UF_4 với F_2 còn uran hexaclorua được điều chế bằng tác dụng của UF_6 với $AlCl_3$.

TÀI LIỆU THAM KHẢO

BERNARD M. Comparative Inorganic Chemistry. Edward Arnold. London 1991.

CASALOT A., DURUPTHY A. Chimic Inorganique. Hachette. Paris 1993.

COTTON F.A., WILKINSON G. Advanced Inorganic Chemistry. John Wiley and Sons. New York 1988.

GRAY H.B. Electrons and Chemical Bonding, W.A. Benjamin, New York 1965.

GREEN WOOD N.N., EARNSHAW A. Chemistry of the Elements. Pergamon Press. Oxford 1984.

GRÉCIAS P., MIGEON P. Chimie (2 tomes). Technique et Documentation. Paris 1991.

HESLOP R.B., ROBINSON P.L. Inorganic Chemistry. Elsevier. Amsterdam 1967.

HUHEEY J.E., KEITER E.A., KEITER R.L. Inorganic Chemistry. Happer Collins 1993.

JOLLY W.L. Modern Inorganic Chemistry. McGraw - Hill. New York 1991.

MAHAN B.M., MYERS R.J. University Chemistry. W.A. Benjamin. California 1987.

MÜLLER U. Inorganic Structural Chemistry. John Wiley and Sons. Chichester 1993.

RODGERS G.E. Introduction to Coordination, Solid State and Descriptive Inorganic Chemistry. McGraw - Hill. New York 1994.

WHRIVER D.F., ATKINS P.W., LANGFOR C.H. Inorganic Chemistry. Oxford University Press 1989.

SEABORG G.T., KATZ J.J. The Chemistry of the Actinide Elements. John Wiley and Sons.

New York 1957.

WELLS A.F. Structural Inorganic Chemistry. Clarendon Press. Oxford 1975.

АХМЕТОВ Н.С. Неорганическая химия. Высшая школа. Москва 1981.

БАРНАРД А. Теоретические основы неорганической химии. Мир. Москва 1968.

БОЛЬШАКОВ К.А. Химия редких и рассеянных элементов, Т.1. Высшая школа. Москва 1965.

ДЕЙ М.К., СЕЛБИН Д. Теоретическая неорганическая химия. Мир. Москва 1969.

КАРАПЕТЬ ЯНЦ М.Х, ДРАКИН С.Н. Общая и неорганическая химия. Москва 1994.

лидин Р.А., молочко в.А., андреева л.л. Химические свойства неорганических веществ. Химия. Москва 1996.

РИПАН Р., ЧЕТЯНУ И. Химия металлов, Т.2. Мир. Москва 1972.

СПИЦЫН В.И., МАРТЫНЕНКО Л.И. Неорганическая химия. Издательство Московского университета Ч.1 1991, Ч.2 1994.

MỤC LỤC

	Trang	Tra	ng
Chương I		Chương II	
Phức chất	3	Cac ligayon to mion.	47
- ·	3	Các đơn chất	48
Sự tạo phức Thuyết mạch	4	Hợp chất của Sc, Y và La	51
Thuyết phối trí	4	$O_{A11} D_2 O_3$	51
Cấu tạo của phức chất	6	Indioxit E(O11)3	51
Nguyên tử trung tâm	6	1111mogotton 22-3	51
Phối tử	7	Cac macrialize v== =	52
Số phổi trí	8	Phức chất của Sc, Y và La	52
Tên gọi của phức chất	9 1		
Hiện tượng đồng phân trong phức chất	10	Chương III	
Đồng phân hình học	10	Các nguyên tố nhóm IVB	54
Đồng phân quang học	11	Các đơn chất	55
Đông phân phối trí	12	Tách riêng từng nguyên tố	
Đồng phân ion hóa	12	cặp Zr-Hf	59
Đông phân liên kết	13	Hợp chất của Ti(IV), Zr(IV)	
	13	và Hf(IV)	59
Thuyết liên kết hóa trị Thuyết trường tinh thể	16	Dioxit EO ₂	59
Thông số tách năng lượng	19	Hidroxit của Ti(IV), Zr(IV) và	
Giải thích từ tính của phức chất	21	Hf(IV)	61
Năng lượng làm bên bởi trường		Oxit hỗn hợp của E(IV)	63
tinh thể	23	Sunfat của E(IV)	65
	24	Hợp chất peoxi của Ti(IV)	65
Hiệu ứng Jan-Telơ Phổ hấp thụ và màu của phức chất	26	Hợp chất của titan với số oxi	
	30	hóa thấp	66
Thuyết obitan phân tử So sánh những kết quả thu được		Hợp chất của Ti(II)	66
của thuyết obitan phân tử với		Hợp chất của Ti(III)	66
thuyết liên kết hóa trị và thuyết		••	
	34	Chương IV	
trường tinh thể	36	Các nguyên tố nhóm VB	69
Liên kết π trong phức chất		Các đơn chất	70
Sự phân li của phức chất trong dụng dịch	, 5,	Chế hóa quặng và tách	
Hằng số bền và hằng số không	37	rieng Nb và Ta	73
bền	31	Hợp chất của V(II), Nb(II) và Ta(II)	74
Hàng số bền tổng và hằng số bền	40	Họp chất của V(III), Nb(III) và Ta(III)	75
ting nac	41	Phức chất claste của Nb và Ta	77
Hiệu ứng vòng càng	. 71	Hợp chất của V(IV), Nb(IV) và Ta(IV)	77
Độ bền của phức chất và	42	Hợp chất của V(V), Nb(V) và Ta(V)	79
độ tan của kết tủa	42 44	Pentaoxit E ₂ O ₅	. 79
Tính chất oxi hóa-khử của phức chất	46	Vanađat, niobat và tantalat	80
Tính chất quit hạza của phức chất	40	4 Million of the August 1	

Peoxivanadat, peoxiniobat		Bronzo vonfram	115
và peoxitantalat	83	Polimolipđat và polivonframat	116
Pentahalogenua EX ₅	84	Hợp chất heteropoli	117
·		Molipden và vonfram hexahalogenua	119
Chương V			
Các nguyên tố nhóm VIB	86		
Các đơn chất	87	Chương VI	
Hợp chất của Cr(0), Mo(0) và W(0)	91	Các nguyên tố nhóm VIIB	121
Crom, molipđen và vonfram		Các đơn chất	122
hexacabonyl	91	Hợp chất của Mn(0),Tc(0) và Re(0)	127
Crom dibenzen	93	Hợp chất của mangan(II)	128
Hợp chất của Cr(II)	95	Mangan(II) oxit	128
Crom(II) oxit	95	Mangan(II) hidroxit	129
Crom(II) hidroxit	95	Muối mangan(II)	129
Muối crom(II)	95	Hợp chất của mangan(III)	131
Crom(II) clorua	95	Mangan(III) oxit	132
Crom(II) axetat	96	Mangan(III) hidroxit	132
Hợp chất của Cr(III)	97	Trimangan tetraoxit	133
Crom(III) oxit	97	Muối mangan(III)	133
Crom(III) hidroxit	98	Hợp chất của mangan(IV)	134
Muối crom(III)	99	Mangan dioxit	134
Crom(III) clorua	101	Muối mangan(IV)	136
Hợp chất của Cr(VI)	102	Hợp chất của mangan(VI)	137
Crom(VI) oxit	102	Hợp chất của mangan (VII)	138
Axit cromic và axit policromic	103	Oxit pemanganic	138
Kali cromat và kali dicromat	104	Axit pemanganic	139
Hợp chất peoxi của crom	107	Kali pemanganat	139
Crom(VI) peoxit	107	Khả năng oxi hóa và độ	137
Peoxicromat(VI)	107	axit của mỗi trường	141
Peoxicromat(V)	108	Phổ chuyển điện tích	142
Hợp chất của Mo(II) và W(II)	108	Hợp chất của reni(III)	144
Molipđen và vonfram đihalogenua	108	Reni(III) halogenua	144
Hợp chất của Mo(III) và W(III)	110	Phức chất của reni(III)	145
Molipđen(III) oxit	110	Hợp chất của tecneti(IV) và reni(IV)	146
Molipđen(III) hiđroxit	110	Tecneti và reni đioxit	146
Molipđen(III) sunfua	111	Tecneti va reni tetrahalogenua	147
Phức chất của Mo(III) và W(III)	111	Hợp chất của tecneti(VI) và reni(VI)	148
Hợp chất của Mo(IV) và W(IV)	111	Tecneti và reni trioxit	148
Molipđen và vonfram đioxit	111	Axit renic	149
Molipđen và vonfram		Tecneti và reni	149
tetrahalogenua	112	hexahalogenua	140
Molipđen và vonfram đisunfua	112	Hợp chất của tecneti(VII) và	149
Hợp chất của Mo(VI) và W(VI)	113	reni(VII)	150
Molipđen và vonfram trioxit	113	Tecneti và reni heptaoxit	150
Axit molipđic và axit vonframic	113	Axit petecnetic và axit perenic	150
Molipdat và vonframat	114	Halogenua và oxohalogenua	150
Xanh molipđen và xanh vonfram	115	của Tc(VII) và Re(VII)	151

Chroma VII		Hợp chất của Pt(VI)	222
Chương VII Các nguyên tố nhóm VIIIB. Họ sắt	153	Tách riêng từng kim loại họ platin	225
Các đơn chất	155		
Chống ăn mòn kim loại	159	Chương IX	
9	163	Các nguyên tố nhóm IB	226
Luyên gang Luyên thép	165	Các đơn chất	228
Hợp chất của Fe(0), Co(0) và Ni(0)	169	Tuyển khoáng	236
Sắt pentacacbonyl	169	Hợp chất của Cu(I), Ag(I) và Au(I)	237
Sát nonacachonyl	170	Oxit E ₂ O	238
Coban octacacbonyl	171	Hidroxit EOH	239
Niken tetracacbonyl	172	Muối E(I)	239
Hợp chất của Fe(II), Co(II) và Ni(II)	173	Hóa học và kĩ thuật nhiếp ảnh	242
Sắt(II), coban(II) và niken(II) oxit	173	Hợp chất của Cu(II) và Ag(II)	243
Sát(H), coban(II) và niken(II)	•	Đồng(II) oxit	243
hidroxit	174	Đồng(II) hiđroxit	245
Muối của Fe(II), coban(II) và		Muối đồng(II)	246
niken(II)	175	Hợp chất của bạc(II)	250
Phức chất của Fe(II), coban(II) và		Hợp chất của Au(III)	251
	178	Vàng(III) oxit	251
niken(II) Phức chất của kim loại và sự sống	187	Vàng(III) hiđroxit	251
Hợp chất của Fe(III), Co(III) và Ni(III)	191	Vàng(III) clorua	251
Oxit E_2O_3	191		
Oxit book book E3O4	192	Chương X	
Kiến trúc tinh thể của các oxit sắt	193	Các nguyên tố nhóm IIB	253
Hidroxit của Fe(III), Co(III) và		Các đơn chất	254
Ni(III)	194	Hợp chất của Zn(II) và Cd(II)	260
Muối Fe(III), Co(III) và Ni(III)	196	Oxit EO	260
Sắt(III) hạlogenua	197	Hidroxit E(OH) ₂	261
Phức chất của sắt(III)	198	Muối của Zr(II) và Cd(II)	261
Phúc chất của coban(III)	202	Hợp chất cơ kim của Zn	
Finde charcal cookin(111)		và Cd	263
Chương VIII		Hợp chất của Hg(II)	263
Các nguyên tố nhóm VIIIB. Họ platin	205	Thủy ngân(II) oxit	263
Các đơn chất	207	Thủy ngân(II) hiđroxit	265
Hợp chất của Ru và Os	209	Muối của Hg(II)	265
Các cacbonyl kim loại	209	Thủy ngân(II) halogenua	266
Các đioxit EO ₂	209	Thủy ngân(II) sunfua	268
Hợp chất của Ru(VI) và Os(VI)	210	Phức chất của Hg(II)	268
Các tetraoxit EO ₄	211	Hợp chất cơ thủy ngân.	270
Hợp chất của Rh và Ir	212	Hợp chất của Hg(I)	270
Hợp chất của Rh(IV) và Ir(IV)	213	Thủy ngân(I) nitrat	271
	214	Thủy ngân(I) halogenua	272
Hợp chất của Pd và Pt Các cacbonyl kim loại	214		
Hợp chất của Pd(II) và Pt(II)	214	Chương XI	
Hợp chất của Pd(IV) và Pt(IV)	220	Các nguyên tố lantanoit	273

			6.01
m chất	275		
c hợp chất của lantanoit	280	•	
Oxit Ln ₂ O ₃	280		

Đơn chất	275
Các hợp chất của lantanoit	280
Oxit Ln ₂ O ₃	280
Hidroxit Ln(OH) ₃	280
Các muối của Ln(III)	280
Phức chất của lantanoit(III)	283
Hợp chất của Ln(IV)	284
Hợp chất của Ln(II)	285
Tách riêng từng nguyên tố đất hiếm	286
ChươngXII	
Các nguyên tố actinoit	289
Đơn chất	290
Tổng hợp nhân tạo những actinoit	
đứng sau uran	294
Hợp chất của thori	296
Thori dioxit	296
Thori tetrahidroxit	296
Muối của Th(IV)	297
Hợp chất của uran	297
Uran trihalogenua	297
Uran dioxit	298
Uran tetrahalogenua	299
Uran trioxit	299
Oxit hỗnhợp U ₃ O ₈	299
Uranyl hidroxit	300
Muői uranyl	300
Muối uranat	302
TIme a bessel - 1	202

Uran hexahalogenua

BẢN TRA CỨU (Số La Mã I, II và III chỉ tập một, hai và ba. Số Ả Rập chỉ trang)

Acgentit III, 232	oxit II, 210, 213
Actini III, 47	pentahalogenua II, 215
Actinoit III, 289	sunfua II, 216
Agon II, 278	tioasenat II, 217
Ái lực electron I, 42, 129	trihalogenua II, 215
Alait III, 72	Auripimen II, 209, III, 143
Aluminat II, 92	Austenit III, 156
Alumosilicat II, 86, 140	Axit I, 210
Amerixi III, 295	Axit Liuyt I, 222
Amiang II, 53, 139	Axit manh I, 220
Amoni II, 169	Axit yếu I, 220
Amoni clorua II, 170	Åc quy chì II, 156
Amoni hexacloroiridat III, 214	Ác quy kiểm bạc III, 250
Amoni peoxidisunfat II, 238	Ác quy kiềm niken III, 195
Amoniac II, 164	Bac:
Anbit II, 141	ắc quy kiểm bạc III, 250
Anico III, 157	đơn chất III, 228
Antimon:	halogenua III, 241
antimonat II, 214	hidroxit III, 239
axit antimonic II, 214	muối bạc (I) III, 239
don chất II, 161, 207	nitrat III, 241
hidroxit II, 212	oxit III, 238, 250
oxiaxit II, 214	Bađeleit III, 57
oxit II, 210, 213	Bán kính ion I, 75
pentahalogenua II, 215	Bán kính nguyên tử I, 124
sunfua II, 216	Bán kinh Van de Van I, 88
tioantimonat II, 217	Bảng tuần hoàn các nguyên tố I, 6, 39
trihalogenua II, 212	Bari:
Antimonit II, 209	cacbonat II, 64
Antimonyl halogenua II, 213	clorua II, 63
Áp suất hơi bão hoà dung dịch I, 202	đơn chất II, 49
<u> </u>	halogenua II, 60
Ap suất hơi chất lỏng I, 95	hidroxit II, 57
Áp suất riêng I, 183	oxit II, 55
Áp suất thẩm thấu I, 205	peoxit II, 57
Áp suất tới hạn I, 93	sunfat II, 63
Apatit II, 54, 193	Barit II, 54
Aquamarin II, 53	Baritin II, 54
Asen:	Batnesit III, 49, 278
asenat II, 214	Bazo I, 211
axit asenic II, 214	Bazo Liuyt I, 222
đơn chất II, 161, 207	Bazo manh I, 220; II, 38, 57
hidroxit II, 212	Bazo Milon III, 264
oxiaxit II, 214	Bazo yéu I, 220
	Bậc phản ứng I, 126
•	Beckeli III. 289

D vê ag II 75	đơn chất II, 251
Benzen vô cơ II, 75	hợp chất giữa halogen II, 274
Berilat II, 52	hidro bromua II, 257
Berili:	oxit II, 264
cacbonat II, 64	pebromat II, 270
clorua II, 61	Bronzo berili III, 230
đơn chất II, 49	Bronzo chì III, 229
halogenua II, 60	Bronzo nhôm III, 229
hidroxit II, 57	Bronzo thiếc III, 229
oxit II, 55	Bronzo vonfram III, 115
sunfat II, 63	Cacbin II, 103
Berin II, 53	Cacbon:
Bitmut:	axit cacbonic II, 115
bitmutat II, 214	axit tioxianic II, 126
đơn chất II, 161, 207	axit tioxiame II, 123
hidroxit II, 212	axii xianindile 11, 124
oxiaxit II, 209	axit xianic II, 125
oxit II, 210, 213	cacbin II, 103
pentahalogenua II, 215	cacbonat II, 120
sunfua II, 216	cacbua II, 109
trihalogenua II, 212	dioxit II, 115
	đisunfua II, 121
Bitmutin II, 209	đơn chất II, 99, 101
Bitmutyl halogenua II, 213	fuleren II, 103
Bo:	kim cương II, 101
axit boric II,	monooxit II, 111
axit metaboric II, 78	tetrahalogenua II, 127
axit orthoboric II, 78	than chì II, 102
borac II, 80	tioxianat II, 126
boran II, 73	xian II, 122
borat II, 79	xianat II, 126
borua kim loại II, 76	xianua II, 122
cacbua II, 82	Cacbonat II, 120
đơn chất II, 70, 71	Cacbonrundum II, 147
nitrua II, 83	Cachon thur tinh II 103
oxit II, 77	Cacbon thuỷ tinh II, 103
peoxiborat II, 81	Cacbua kim loai II, 109
triflorua II, 81	Cacnalit II, 53
Borac II, 72	Calamin III, 257
Borasit II, 72	Cancopirit III, 232
Borazan II, 76	Cancosin III, 232
Borazen II, 76	Califoni III, 289
Borazin II, 76	Canit II, 54
	Canxi:
Borazol II, 75	cacbonat II, 65
Boxit II, 86	cacbua II, 110
Braunit III, 125	clorua II, 61
Brom:	đơn chất II, 49
axit bromhidric II, 258	halogenua II, 60
axit bromic II, 268	hidroxit II, 57
axit hipobromo II, 266	oxit II, 55
axit pebromic II, 271	sunfat II, 63
bromat II, 268	SWILLIAM AP, TT

voi 11, 55	Chất tạo phức III, 6
Caxiterit II, 150	Chất tan I, 194
Cao lanh II, 86, 143	Chất tẩy trắng II, 36, 79, 267,
Cao su vô cơ II, 206	Chất thù hình I, 6; II,12, 83, 101, 190
Caolinit II, 86, 140	Chất thuận từ I, 83
Cát II, 137	Chất tinh thể 1,99
Catmi:	Chất ức chế I, 169, III, 237
dihalogenua III, 261	Chất vô định hình I, 99
đơn chất III, 254	Chất xúc tác I, 169, 191, III, 206
hiđroxit III, 261	Chelat III, 8, 41
hợp chất cơ Cd III, 263	Chì:
muối Cd(II) III, 261	ắc quy chỉ II, 156
oxit III, 260	đơn chất II,148
Cân bằng điện li I, 210	dihalogenua II, 153
Cân bằng hòa tan I, 194	dioxit II, 154
Cân bằng hóa học I, 179	hidroxit II, 152, 157
Cấu hình electron nguyên tử I, 35	monoxit II, 151
Cấu hình electron phân tử I, 68	oxit hỗn hợp II, 157
Cấu tạo chất I, 85	plombat II, 157
Cấu tạo nguyên tử I, 20	sunfua II, 160
Cấu tạo phân tử I, 45	tetrahalogenua II, 158
Cấu tạo phức chất III, 6, 13, 16, 30	Chỉ số hiđro I, 224
Châm hóa rắn I, 96	Chi số pH I, 224
Chậm sôi I, 96	Chi thị màu I, 225
Chất bán dẫn I, 114, II, 129	Chống ăn mòn kim loại III, 159
Chất bánh kẹp III, 93, 181	Chu trình Habe-Boocno I, 118
Chất cách điện I, 113	Chuẩn độ axit-bazơ I, 240
Chất chỉ thị mầu I, 225	Chuẩn độ bromat II, 269
Chất claste III, 77, 103, 144	Chuẩn độ iot II, 237
Chất dẫn điện I, 112	·
Chất điện li I, 206	Chuẩn độ pernanganat III, 140
	Chuyển dịch điện tích III, 142
Chất điện lị mạnh I, 212	Claste III, 77, 103, 144, 216
Chất điện li yếu I, 212	Clinke II, 143, 146
Chất gơm III, 237	Clo:
Chất hút ẩm II, 62, 138, 196, 271	axit clohidric II, 258
Chất hoạt động bề mặt II, 23	axit clord II, 268
Chất ít tạn I, 226	axit cloric II, 268
Chất kích hoạt I, 171, III, 237	axit hipocloro II, 266
Chất khí I, 92	axit pecloric II, 271
Chát kiểm I, 38	clorat II, 268
Chất lỏng I, 94	clorua vôi II, 267
Chất nổ II, 186, 189	don chất II, 251
Chất nghịch từ I, 83	hợp chất giữa halogen II, 274
Chất oxi hoá I, 242	hidro clorua II, 257
Chất rắn I, 98	hipoclorit II, 266
Chất sát trùng H, 36, 79, 267, 270, III, 139	kali clorat II, 270
Chất sắt từ I, 84, III, 156	nước Javen II, 267
Chất siêu dẫn ở nhiệt độ cao III, 245	oxit II, 263
Chất siêu dẫn II, 147, III, 245	peclorat II, 271
Chất tạo bọt III, 236	Coban:

•	· ·
cacbonyl III, 171	Dung dịch bão hòa I, 196
đihalogenua III, 175	Dung dịch keo I, 297
đơn chất III, 155	Dung dịch lí tưởng I, 195
hiđroxit III,174, 194	Dung dịch phân tử I, 197
màu của phức chất Co(II) III, 184	Dung dịch qua bão hoà I, 197
muối coban(II) III, 175	Dung dịch rắn I, 103
muối coban(III) III, 196	Đá cẩm thạch II, 54
natri hexanitrocobanat III, 206	Đá hoa II, 54
oxit III, 173, 191, 192	Đá lửa III, 277
phức chất coban(II) III, 183	Đá mạ não II, 137
phức chất coban(III) III, 202	Đá phấn II, 54
sunfat III, 197	Đá quý II, 53, 89, 103, III, 57
triflorua III, 197	Đá quaczit II, 137
Cobantin III, 161	Đá tan (Hoạt thạch) II, 53, 140
Cobantoxen III, 182	Đất sét II, 143
Columbit III, 72	Đất sét chịu lửa II, 143
Constantan III, 157	Điểm nóng chảy I, 98
Corundum II, 89	Điểm sôi I, 95
Covelin III, 232	Điểm tương đương I, 240
Công thức hoá học I, 8	Diện cực I, 246
Cơ chế phản ứng I, 160	Diện cực calomen III, 273
Cơ chế xúc tác I, 171	Điện cực hiđro I, 249
Cơ học cổ điển Í, 29	Điện di I, 276
Cơ học lượng tử I, 29	Điện li I, 208
Cơ học Niutơn I, 29	Điện phân I, 263
Criolit II, 86, 255	Dinat II, 143
Cristobalit II, 134	Định luật Avôgađrô I, 5
Crom:	Định luật bảo toàn khối lượng Lavoadiê I,
axetat III, 96	5
axit cromic III, 103	Định luật Boi-Mariot-Gay Luyxặc I, 12
axit policomic III, 103	Dịnh luật đương lượng Đanton I, 15
cacbonyl III, 91	Định luật Farađay I, 263
cromat III, 104	Định luật góc không đổi giữa các mặt
đibenzen III, 93	tinh thể I,100
diclorua III, 95	Định luật Henri I, 198
dicromat III, 104	Định luật Hexơ I, 139
đơn chất III, 86	Định luật Lavoadiê-Laplaxơ I, 139
hidroxit III, 93, 98	Định luật Môzolây III, 279
muối crom(III) III, 99	Định luật Necsto I, 151
oxit III, 95, 97	Định luật pha loãng Otvan I, 219
peoxicromat III, 107	Định luật phân bố I, 220
peoxit III, 107	Định luật Raun thứ hai I, 204
triclorua III, 101	Định luật Raun thứ nhất I, 202
trioxit III, 102	
Cromat III, 104	Định luật tác dụng khối lượng I,159, 180
Cromit III, 89, 97	Định luật tỉ lệ thể tích Gay Luyxác I, 9
Cuprit III, 232, 244	Định luật thành phần không đổi Porut I, 8
Curi III, 289	Định luật tuần hoàn Menđelêep I, 37, 123 Định luật Van Hốp I, 206
Dầu mỏ II, 107	Dolomit II, 53
Diêm tiêu II, 163, 189	Đô bối của liên kết I 73
	-v voi cha iich rei i / 7

000
A .
2/20
8.

Độ bền của phức chất III, 37, 42	đơn chất III, 275
Độ cứng của nước II, 67	hidroxit III, 280
Độ cứng lâu dài II, 67	muối của Dy(III) III, 280
Độ cứng tạm thời II, 67	nitrat III, 282
Độ dài liên kết I, 74	oxalat III, 282
Độ dẫn điện I, 123, 214	oxit III, 280
Độ điện âm I, 43, 130	phức chất của Dy(III) III, 283
Độ mạnh của axit hay bazơ I, 218	phức chất với axit xitric III, 283
Độ phân li biểu kiến I, 215	phức chất với EĐTA III, 283
Độ phân li hay điện li I, 212	sunfat III, 281
Độ tan I, 196	tách riêng nguyên tố III, 286
Độ thuỷ phân I, 235	trihalogenua III, 281
Động hoá học I, 158	Ecbi:
	cacbonat III, 282
Đông tụ keo I,270	đơn chất III, 275
Đồng:	hidroxit III, 280
axetat III, 250	muối của Er(III) III, 280
chất siêu dẫn ở nhiệt độ cao III, 245	nitrat III, 282
diclorua III, 247	oxalat III, 282
don chất III, 228	oxit III, 280
hidroxit III, 239, 245	phức chất của Er III, 283
monoclorua III, 240	phức chất với axit xitric III, 283
muối của Cu(I) III, 239	phức chất với EĐTA III, 283
muối của Cu(II) III, 246	•
nước Felinh III, 249	sunfat III, 281
nước Suâyze III, 245	tách riêng nguyên tố III, 286
oxit III, 237, 243	trihalogenua III, 281
sunfat III, 248	Electron I, 6
thau III, 230	Electron (hợp kim) II, 51
Đồng phân I, 8, III, 10	Emorot II, 53
Đồng phân gương III, 11	Ensteni III,
Đồng phân hình học III, 10	Entanpi I, 142
Đồng phân ion hoá III, 12	Entanpi tự do I, 54
Đồng phân liên kết III, 13	Entropi I, 150
Đồng phân phối trí III, 12	Enzim I, 171
Đồng phân quang học III, 11	Europi :
Đồng phân trong phức chất III, 10	cacbonat III,
Đồng thau III, 230	đơn chất III, 275
Đồng thiếc III, 229	hiđroxit III,
Đồng thó III, 234	muối Eu(II) và Eu(III) III, 280
Đơn chất I, 5	nitrat III,
Doteri II, 3	oxalat III,
Đuyra II, 51	oxit III, 280
Đương lượng I, 16	phức chất của Eu III, 283
Đương lượng gam I, 18, 201	phức chất với axit xitric III, 283
Đương lượng gam lít I, 201	phức chất với EĐTA III, 283
Đương lượng hợp chất I, 17	sunfat III, 281
Đương lượng I, 16	tách riêng nguyên tố III, 286
Đương lượng nguyên tố I, 16	trihalogenua III, 281
Dysprosi :	Fecmi III, 289
cacbonat III, 282	Ferat III, 204

Ferocrom III, 90	đơn chất II,148
Feromangan III, 125	gecmanat II, 157
Feromolipđen III, 91	hidroxit II, 152, 157
Ferosilic II, 129, III, 73	hiđrua II, 151
Ferotitan III, 57	monoxit II, 151
Ferovonfram III, 91	sunfua II, 160
Ferit III, 192	tetrahalogenua II, 158
Feroxen III, 181	Gel I, 27: II, 138
Flo:	Gốm II, 134
axit flohidric II, 258	Gốm composit II, 144
axit hipofloro II, 266	Gốm dân dụng II, 143
đơn chất II, 128	Gốm kĩ thuật II, 144
hợp chất giữa halogen II, 274	Grenokit III, 257
hidro florua II, 257	Halogen II,251
oxit II, 262	Halogen giả II, 278
Floapatit II, 54	Halogenua các nguyên tố II, 260
Florit II, 54, 255	Halogenua công hoá trị II, 261
Franxi II, 3	Halogenua ion II, 261
Fuleren II, 103	Hafni:
Gach chiu lua II, 143	đơn chất III, 54
Gadolini:	hidroxit III, 59, 66, 67
cacbonat III, 282	oxit hỗn hợp III, 63
đơn chất III, 275	oxit III, 59, 66
hidroxit III, 280	sunfat III, 65
muối của Gd(III) III, 280	tách riêng nguyên tố III, 159
nitrat III, 282	tetrahalogenua III, 63
oxalat III, 282	Hạt nhân nguyên tử I, 6
oxit III, 280	Hausmanit III, 125
phức chất của Gđ III, 283	Hằng số axit I, 218, 220
phức chất với axit xitric III,283	Hằng số bền của phức chất III, 37, 40
phức chất với EĐTA III, 283	Hằng số bazơ I, 220
sunfat III, 281	Hằng số cân bằng của phản ứng oxi hoá -
tách riêng nguyên tố III, 286	khử I, 263
trihalogenua III, 281	Hằng số cân bằng I, 180
Gadolinit III, 49	Hằng số nghiệm lạnh I, 204
Galen II, 150	Hằng số nghiệm sôi I, 205
Gali:	Hằng số tốc độ phản ứng I, 159, 164
đơn chất II, 49, 95	Hằng số tới hạn I, 93
halogenua II, 97	Hằng số thuỷ phân I, 235
hidroxit II, 97	Heli II, 278
oxit II, 96	Hem III, 188
Galoazit II, 143	Hematit III, 161
Gang biến tính III, 276	Hemoglobin III, 189
Gang kinh III, 123	Hệ dị thể I, 184
Gang trắng III, 163	Hệ đồng thể I,181
Gang xám III, 163	He gel I,297; II, 137
Geomanat II, 157	Hệ huyền phù I, 193
Gecmani:	Hệ keo I, 267
dihalogenua II, 153	Hệ lơ lửng I, 193
dioxit II, 154	Hệ lập phương I, 101
CONTRACTOR	Try top primore to 101

ું જે	ė,
,,	

Hệ lục phương I, 101	clorua II, 257
Hệ mặt thoi I, 101	đơn chất II, 3
Hệ nhũ tương I, 193	florua II, 257
Hệ phân tán I, 193	hiđrua II, 8
Hệ platma I, 121	iođua II, 257
Hệ sol I, 297; II, 137	nguyên tử II, 6
Hệ số hoạt độ I, 216	peoxit II, 28
Hệ số nhiệt độ I, 166	sunfua II, 223
Hệ số phương trình phản ứng I, 243	xianua II, 123
Hệ số Van Hôp I, 208	Hiđro kim loại II, 4
Hệ tam phương I, 101	Hiđro nguyên tử II, 6
Hệ tam tà I, 101	Hidroxilamin II, 173
Hệ tinh thể I, 100	Hidrua các nguyên tố II, 8
Hệ tinh thể lỏng I, 119	Hiđrua cộng hoá trị II, 9
Hệ tứ phương I, 101	Hidrua ion II, 8
Hiện tượng đồng phân I, 18, III, 10	Hiđrua kiểu kim loại II, 9
Hiện tượng bào mòn tầng ozon II, 17	Hóa trị I, 17, 54
Hiện tượng chảy rữa I, 24	Hoat độ I, 215
Hiện tượng chậm hoá rắn I, 96	Hoạt thạch (Đá tan) II, 53, 140
Hiện tượng chậm sôi I, 96	Honmi :
Hiện tượng đa hình I, 102; II, 89, 134	cacbonat III, 282
Hiện tượng đông cứng thạch cao II, 64	đơn chất III, 275
Hiện tượng đồng cứng vữa vôi II, 58	hidroxit III, 280
Hiện tượng đông cứng xi măng II, 145	muối của Ho(III) III, 280
Hiện tượng đông tụ keo I, 270	nitrat III, 282
Hiện tượng đồng phân trong phức chất	oxalat III, 282
II,10	oxit III, 280
Hiện tượng hoà tan I, 194	phức chất của Ho III, 283
Hiện tượng khói mù quang hoá II, 177	phức chất với axit xitric III, 283
Hiện tượng lên hoa I, 24	phúc chất với EĐTA III, 283
Hiện tượng lai hoá I, 56; III, 13	- · · · · · · · · · · · · · · · · · · ·
Hiện tượng mưa axit II, 233	sunfat III, 281
Hiện tượng qúa bão hoà I, 197	tách riêng nguyên tố III, 286
	trihalogenua III, 281
Hiện tượng qua thế II, 264	Hỗn hống II, 33, 41, III, 255
Hiện tượng quang điện I, 23	Hồn hống hoá III, 235
Hiện tượng thấm thấu I, 250	Hỗn hợp đẳng phí II, 184, 258
Hiện tượng thủ hình I, 6	Hỗn hợp đồng sôi II, 184, 258
Hiện tượng thụ động hóa II, 185	Hỗn hợp nố II, 5, 112
Hiện tượng Tinđan I, 268	Hợp chất I, 5
Hiệu ứng cực hoá thêm III, 268	Hợp chất bánh kẹp III, 93, 181
Hiệu ứng Jan-Telo III, 24, 246	Hợp chất bao II, 297
Hiệu ứng nhà kính II, 117	Hợp chất claste III, 77, 103, 144, 216
Hiệu ứng vòng càng III, 41	Hop chất cơ kim III, 93, 181, 263, 270
Hidrat I, 194	Hợp chất heteropoli III, 117
Hidrat tinh thể II, 24	Hop chất izopoli III, 82, 116
Hidrat hoá I, 194, 209: II, 24, 64, 145	Hợp chất không hợp thức I, 8
Hidrazin II, 179	Hợp chất phối trí III, 6
Hidro:	Hợp chất thiếu electron II, 73
azit II, 172	Hợp kim chữ in II, 151
bromua II, 257	Hợp kim Uđỏ II, 208,III, 255

Indecmit II, 72	oxit III, 260
Indi:	Keo kị dung môi I, 269
đơn chất II, 49, 95	Keo kị nước, 269
halogenua II, 97	Keo ưa dung môi I, 269
hidroxit II, 97	Keo ưa nước I, 269
oxit II, 96	Khối lượng nguyên từ I, 9
Inmenit III, 57	Khối lượng phân tử chất tan I, 207
Iot:	Khối lượng phân tử I, 9, 207
axit hipoiodo II, 258	Khí hiểm II, 278
axit iodic II, 268	Khí quý II, 278
axit iothidric II, 257	Khí tro II, 278
axit metapeiodic II, 274	Khoảng pH đổi màu I, 226
axit mezopeiodic II, 273	Kí hiệu hoá học I,6
axit parapeiodic II, 275	Kim loại chuyển tiếp I, 40, III, 3
axit peiodic II, 273	Kim loại cụ thể xem mục của mỗi kim loại
đơn chất II, 251	Kim loại actinoit I, 38; III, 289
hợp chất giữa halogen II, 274	Kim loại họ đất hiểm III, 274
hiđro iođua II, 257	Kim loại lantanoit I, 38; III, 273
iođat II, 268	Kim loại họ platin III, 205
oxit II, 265	Kim loại họ sắt III, 153
peiođat II, 273	Kim loại kiểm I, 31
Iriđi :	Kim loại kiểm thổ II, 49
amoni hexacloroiridiat(IV) III, 214	Kim loại màu III, 232, 237
dioxit III, 213	Kripton II, 278
đơn chất III, 207	Lantan:
oxit III, 22, 213	cacbonat III, 282
tách riêng nguyên tố III, 224	đơn chất III,47
trihalogenua III, 213	hidroxit III, 51
Izumrut II, 53	muối La(III) III, 51
Kali :	nitrat III, 282
cacbonat II, 47	oxalat III, 282
clorat II, 270	oxit III, 51
cromat III, 104	phức chất của La III, 52, 283
đieromat III, 104	phức chất với axit xitric III, 283
đơn chất II, 31	phức chất với EĐTA III, 283
halogenua II, 44	sunfat III, 281
nitrat II, 189	tách riêng nguyên tố III, 286
oxit II, 35	trihalogenua III, 51
ozonit II, 20, 37	Lantanoit III, 237
pemanganat III, 139	Laurenxi III, 289
peoxit II, 36	Liên kết bốn III, 96, 145
supeoxit II, 37	Liên kết ba electron II, 12, 176
Kecnit II, 72	Liên kết ba I, 63
Kem:	Liên kết ba tâm I, 91; II, 74
điclorua III, 262	Liên kết có cực I, 49
đihalogenua III, 261	Liên kết cộng hóa trị I, 49, 51
đơn chất III, 254	Liên kết cho-nhận I, 50, 222; III, 14
hidroxit III, 261	Liên kết đôi I, 62
hợp chất cơ kẽm III, 263	Liên kết đơn I, 61
muối Zn(II) III, 261	Liên kết hiđro I, 89
	· • • • • • • • • • • • • • • • •

Liên kết ion I, 46	axit sunfuric II, 230
Liên kết không cực I, 49	axit tiosunfuric II, 235
Liên kết kim loại I, 111	deo II, 220
Liên kết π-cho III, 91, 127, 169	đihiđro polisunfua II, 224
Liên kết π không định chỗ I, 64, 75	đihiđrosunfua II, 222
Liên kết π I, 61	đíoxit II, 226
Liên kết phối trí III, 14	đơn chất II, 218
Liên kết σ I, 61	đơn tà II, 219
Liti:	halogenua II, 241
cacbonat II, 46	hoa II, 222
don chất II, 31	natri sunfua II, 226
halogenua II, 44	oleum II, 231
hidroxit II, 38	sunfat II, 233
oxit II, 35	sunfit II, 227
Loparit III, 278	sunfua kim loại II, 224
Lò bazo-oxi III, 168	sunfuryl halogenua II, 243
Lò Bexeme III, 166	tà phương II, 219
Lò cao III, 164	thỏi II, 222
	tionyl halogenua II, 243
Lò điện điều chế axetilen II, 111	trioxit II, 229
Lò điện điều chế photpho II, 193	Mã não II, 135
Lò Mactanh III, 167	Macnhali II, 51
Lutexi:	Mactensit III, 156
cacbonat III, 282	Magie:
, đơn chất III, 275	cacbonat II, 64
hidroxit III, 280	đơn chất II, 49
muối của Lu(III) III, 280	halogenua II, 60
nitrat III, 282	hidroxit II, 57
oxalat III, 282	magie clorua II, 61
oxit III, 280	-
phức chất của Lu III, 283	magie peclorat II, 271 oxit II, 55
phức chất với axit xitric III, 283	
phức chất với EĐTA III, 283	peoxit II, 56
sunfat III, 281	sunfat II, 63
tách riêng nguyên tố III, 286	Magiezit II, 53
trihalogenua III, 281	Malachit III, 232
Lực giữa phân tử I, 85	Mạng lưới ion I, 105, 108
Lực trường phối từ III, 20	Mang lưới kim loại I, 108
Luc Van de Van I, 85	Mạng lưới nguyên tử I, 104; II, 83, 101,
Lưu huỳnh :	147
axit đitiono II, 239	Mạng lưới phân tử I, 1-5;II, 220, 252
axit ditionic II, 240	Mạng lưới tinh thể I, 103
axit bromsunfonic II, 244	Mangan:
axit closunfonic II, 244	axetat III, 134
axit flosunfonic II, 244	axit pemanganic III, 139
axit peoxidisunfuric II, 237	cacbonyl III, 127
axit peoximonosunfuric II, 237	chuẩn độ pemanganat III, 140
axit polisunfuric II, 230	đioxit III, 134
axit politionic II, 240	đisunfat III, 137
axit sunfuro II, 227	đơn chất III, 122
and the same of th	hentagy it III 138

hidroxit III, 129, 132	trihalogenua III, 110
manganat III, 137	trioxit III, 113
manganit III, 135	xanh molipđen III, 114
monooxit III, 128	Molipđenit III, 89
muối mangan(II) III, 129	Momen lưỡng cực I, 78
muối mangan(III) III, 133	Momen từ I, 83
muối mangan(IV) III, 136	Monazit III, 28, 43, 293
oxit III, 128, 132, 133	Monen III, 157
pemanganat III, 139	Montmorilonit III, II, 143
phức chất mangan(III) III, 134	Muối I, 211 .
sunfat III, 134	Muối ăn II, 45
tetraciorua III, 137	Muối đỏ máu III, 198
tetraflorua III, 136	Muôi Graham II, 201
triflorua III, 133	Muối kép II, 93; III
Manganat III,137	Muối Liuyt I, 222; III, 19
Manganin III, 123	Muối Manhut III, 217
Manganit III, 135	Muối Mo III, 178
Manhetit III, 161	Muối Pâyron III, 217
Mẫu nguyên tử Bo-Xomefen I, 24	Muối vàng máu III, 181
Mẫu nguyên tử Rozopho I; 23	Muối Vokelen III, 216
Men I, 171; II, 144	Muối Xayze III, 218
Menchio III, 230	Natri:
Mendelevi III, 289	cacbonat II, 47
Mica II, 86, 140	clorua II, 45
Milerit III,161	đơn chất II, 31
Mioglobin III, 190	halogenua II, 44
Mol I, 10, 200	hidrocacbonat II, 47
Mol ion I, 200	hidroxit II, 38, 39
	oxit II, 35
Mol nguyên tử I, 10	
Molon L 200	peoxit II, 36
Molan I, 200	sunfua II, 226
Molipdat III, 114	tiosunfat II, 236
Molipden:	Näng lượng Gip I, 154; II, 269
axetat III, 110	Năng lượng hoạt hoá I, 166
axit molipdic III, 114	Năng lượng ion hoá I, 40
cacbonyl III, 91	Năng lượng làm bền bởi trường tinh thể III.
claste III, 108	• 23
đihalogenua III, 108	Năng lượng liên kết cộng hoá trị I, 72
dioxit III, 111	Năng lượng liên kết ion I, 47
disunfua III, 112	Năng lượng mạng lưới ion I, 116;II 59
đơn chất III, 86	Nayzinbe III, 230
heteropolimolipđat III, 117	Nefelin II, 86, 88
hexahalogenua III,119	Neodim:
hidroxit III, 110	cacbonat III, 282
izopolimolipđat III, 117	đơn chất III, 235
oxit III, 110, 113	hiđroxit III, 280
phức chất của molipđen (III) III, 111	muối Nd(III) III, 280
polimolipdat III, 114	nitrat III, 282
sunfua III, 110	oxalat III, 282
tetrahalogenua III, 112	oxit III, 280

8/4. 0000
8/9.2

phưc chất của NG 111, 283	Timer doing not not 1, 140
phức chất với axit xitric III, 283	Nhiệt đốt cháy I, 136
phức chất với EĐTA III, 283	Nhiệt hidrat hóa 1, 209, 297; II, 43, 59, 252
sunfat III, 281	Nhiệt hòa tan I, 195; II, 43
tách riêng nguyên tố III, 286	Nhiệt hóa hơi I, 96
trihalogenua III, 281	Nhiệt hóa học I, 137
Neon II, 278	Nhiệt nóng chảy I, 98
Neptuni III, 289	Nhiệt nguyên tử hóa I, 98, 257
Nguyên lí bất định Hâyxenbe I, 28	Nhiệt phản ứng I, 137, 144
Nguyên lí Lơ Satolie I, 188	Nhiệt sonvat hóa I, 195
Nguyên li loai trừ Paoli I, 34	Nhiệt tạo thành I, 138, 144
Nguyên lí thứ ba của nhiệt động học I, 151	Nhiệt thăng hoa I, 98, 257
Nguyên lí thứ hai của nhiệt động học I,	Nicrom III, 88
	Niken:
149 Naman lí thứ phát của phiật động học I	ăc qui kiểm niken (III), 195
Nguyên lí thứ nhất của nhiệt động học I,	don chất III, 155
141	hidroxit III, 174, 194
Nguyên tố cụ thế (xem mục riêng)	muối niken(II) III, 175
Nguyên tố actinoit I, 40, III, 289	
Nguyên tố chuyển tiếp I, 40	nikeloxen III, 182
Nguyên tố điển hình I, 40	oxit III, 173
Nguyên tố họ actini I, 40, III, 289	phức chất hình vuông của niken(II)
Nguyên tố họ lantan I, 40, III, 273	III,185
Nguyên tố họ platin III, 205	sunfat III, 177
Nguyên tố họ sắt III, 253	tetracacbonyl III, 172
Nguyên tố hoá học 1, 6	Nikelin III, 157, 161
Nguyên tố lantanoit I, 40, III, 273	Nikeloxen III, 182
Nguyên tố phóng xạ II, 31, 246; III, 289	Niobat III, 82
Nguyên tử I, 5	Niobi:
Nguyên tử gam I, 10	claste III, 79
Nguyên tử lượng I, 9	đihalogenua III, 75
Nguyên tử nhiều electron I, 34	đơn chất III, 69
Nguyên tử trung tâm III, 6	hợp chất peoxi III, 83
Nhôm :	niobat III, 82
clorua II, 92	oxit III, 74, 75, 77, 79
don chất II, 70, 84	pentahalogenua III, 83
	tetrahalogenua III, 79
halogenua II, 92	trihalogenua III, 76
hidroxit II, 91	tách riêng nguyên tố III, 73
hiđrua II, 88	Nito:
oxit II, 89	axit hidrazoic II, 173
phèn II, 94	axit hiponitro II, 181
phèn nhôm -kali II, 94	
sunfat II, 94	axit nitro II, 182
Nhiệt chuyển pha I, 195	axit nitric II, 183
Nhiệt dung I, 14, 143	azit II, 173
Nhiệt độ bốc cháy II, 12	don chất II, 161, 162
Nhiệt độ nóng chảy I, 98, 143	hidroazit II, 172
Nhiệt độ sôi I, 95, 134	hiponitrit II, 181
Nhiệt độ tới hạn I, 93	nitrit II, 183
Nhiệt động học quá trình oxi hóa	nitrua kim loại II, 174
cacbonII.118	oxit II, 175

trihalogenua II, 166	Oxit lưỡng tính II, 19
Nitrat II, 188	Oxit tro II, 19
Nitroglixerin II, 186	Ozon II, 15
Nitrotoluen II, 186	Ozonit II, 20, 37
Nitrua kim loại II, 174	Palađi :
Nobeli III, 289	điclorua III, 215
Nội năng I, 141	đơn chất III, 207
Nồng độ đương lượng gam I, 201	hidroxit III, 215, 220
Nồng độ I, 200	monooxit III, 214
Nồng độ mọi I, 200	muối Vokelen III, 216
Nồng độ molan I, 200	phức chất của Pd(II) và Pd(IV)
Nổng độ phần mọi I, 201	III, 216, 22
Nồng độ phần trăm I, 200	tách riêng nguyên tố III, 224
Nước biến II, 26	tetrahalogenua III, 221
Nước công nghiệp II, 26	Patronit III, 72
Nước cất II, 26	Pehidrol II, 29
Nước cứng II, 67	Pemanganat III, 139
Nước II, 21	Penladit III, 161
Nước Javen II, 267	Peoxiborat II, 98
Nước khoáng II, 25	Peoximolpđat III, 107
Nước mềm II, 67	Peoxiniobat III, 83
Nước nặng II, 26	Peoxisunfuric II, 237
Nước oxi II, 28	Peoxit II, 20, 36, 56; III, 167, 301
Nước sông II, 25	Peoxitantalat III, 83
Nước sinh hoạt II, 26	Peoxititanic III, 65
Nước thải II, 27	Peoxivanadat III, 83
Obitan không định chỗ I, 111	Peoxivonframat III, 107
Obitan nguyên tử I, 31	Perenat III, 151
Obitan phân tử I, 64	Peropskit III, 63
Obitan phân tử liên kết I, 64	Pesunfat II, 237
Obitan phân tử π I, 68	Petecnetat III, 151
Obitan phân tử phản liên kết I, 64	Pha I, 191
Obitan phân tử ơ I, 64	Pha lê thiên nhiên II, 136
Opal II, 135	Phản ứng dây chuyển I, 173
Orthoclazo II, 86	Phản ứng hạt nhân III, 51, 126, 295
Osmi:	Phán ứng hóa học I, 18
cacbonyl III, 209	Phản ứng nitro hóa II, 186
đơn chất III, 207	Phản ứng oxi hóa-khử I, 242, III, 44
osmat III, 210	Phản ứng phát nhiệt I, 18
osmi dioxit III, 209	Phản ứng quang hợp II, 117, III, 189
osmi tetraoxit III, 211	Phản ứng quang hóa học I, 175
tách riêng nguyên tố III, 224	Phản ứng tạo phức I, 19, 222, III, 3
Oxi:	Phản ứng tự xúc tác I, 169
đơn chất II, 11	Phản ứng thu nhiệt I, 18
oxi hoá II, 13	Phản ứng thuận nghịch I, 179
oxit II, 18	Phản ứng thuỷ phân I, 234, III, 46
Oxit axit II, 19	Phản ứng trao đổi I, 18, 232
Oxit bazo II, 18	Phán ứng trung hòa I, 239
Oxit II, 18	Phân bón hóa học II, 201
	Phân đạm II, 202

Phân kati II, 202	Phối từ một càng III, 7
Phân lân hữu cơ vi sinh II, 203	Phối từ nhiều càng III, 8
Phân lân II, 202	Phức chất bánh kẹp III, 93, 181
Phân phức hợp II, 203	Phức chất bát diện III, 15, 16, 30
Phân tử I, 8	Phức chất cụ thể (xem mục riêng)
Phân tử gam I, 10	Phức chất claste III, 77, 103, 144, 216
Phân tử lượng I, 9	Phức chất hình vuông III, 14, 18, 185, 216
Phân tử số I, 161	Phức chất hỗn hợp phối tử III, 183, 206,
Phenakit II, 139	214
Phenspat II, 141	Phức chất III, 3
Photphin II, 193	Phức chất π cơ kim III, 93, 181, 218
Photpho:	Phức chất tử điện III, 14, 17, 33
axit metaphotphoric II, 198	
axit orthophotphoric II, 198	Phức chất vòng càng III, 8, 11, 42
axit pirophotphoric II. 198	Phương pháp Aken-Đơ Bôe III, 58
• • •	Phương pháp buồng chì II, 232
đơn chất II, 161, 162	Phương pháp Cannizarô I, 15
den II, 191	Phương pháp chống ăn mòn kim loại III,
diphotphin II, 194	159
đỏ II, 191	Phương pháp chuẩn độ bromat II, 269
oxiclorua II, 205	Phương pháp chuẩn độ iot II, 230
oxit hỗn hợp II, 196	Phương pháp chuẩn độ pemanganat III,140
oxit II, 194,195	Phương pháp chuẩn độ xeri III, 285
pentaclorua II, 205	Phương pháp chưng cất phân đoạn II, 14
pentahalogenua II, 204	Phương pháp điện phân I, 263, II, 39, 87
phân lân hữu cơ vi sinh II, 203	Phương pháp điều chế dung dịch keo I, 267
phân lân nung chảy II, 202	Phương pháp Đuylông-Poti I, 14
photphin II, 193	Phương pháp hỗn hống hóa III, 235
photpho ngưng tụ II, 200	Phương pháp kết tinh phân đoạn III,59,74,
photphonitrilic II, 206	287
sunfua II, 207	Phương pháp Lơ Blăng I, 47
supephotphat don II, 202	Phương pháp nhiệt kim loại III,
supephotphat kép II, 202	50,58,279,294
trắng II, 190	Phương pháp nhiệt luyện II, 120, 258
triclorua II, 205	Phương pháp nhiệt nhôm II, 85; III, 90
trihalogenua II, 203	Phương pháp quang phổ khối I, 14
Photphorit II, 193	Phương pháp thẩm tích I, 268
Phổ ánh sáng mặt trời I, 20, HI, 26	Phương pháp thẩm thấu ngược I, 206
Phổ bức xạ điện từ I, 20	Phương pháp thủy luyện III, 234, 259
Phổ chuyển dời electron III, 27	Phương pháp tiếp xúc II, 232
Phổ chuyển điện tích III, 142	
Phổ hấp thụ của muối Co(II) III, 185	Phương pháp truyền khoáng III, 326
Phổ hấp thụ của muối Cu(II) III, 247	Phương pháp tuyển khoáng III, 236
	Phương pháp xác định độ điện li I, 212
Phổ hấp thụ của muối Mn(II) III, 130	Phương pháp xác định khối lượng phân tử
Phổ hấp thụ của muối Ni(II) III, 179	
Phổ hấp thụ của muối pemangnat III, 143	Phương pháp xác định phân tử lượng chất
Phổ hấp thụ I, 21,III, 26	tan I, 207
Phổ hấp thụ và màu của phức chất III, 26	Phương pháp Xonvay I, 47
Phổ nguyên tử H I, 21	Phương trình Boocnơ I, 118
Phổ phát xạ I, 21	Phương trình Capustinski I, 118
Phối tử III, 7	Phương trình hóa học I, 18

Phương trình Necsto I, 258	hidroxit III, 280
Phương trình sóng Scrođingo I, 29	muối Pm(III) III, 280
Phương trình trạmg thái khí thực I, 92	nitrat III, 282
Phương trình trạng thái khí I, 12	oxalat III, 282
Phương trình trạng thái khí lí tưởng I, 92	oxit III, 280
Pin cúc thủy ngân III, 265	phức chất của Pm III, 283
Pin điện I, 246	phức chất với axit xitric III, 283
Pin khô II, 170	phức chất với EĐTA III, 283
Pin nồng độ I, 260	sunfat III, 281
Pin nhiên liệu hiđro-oxi II, 5	tách riêng nguyên tố III, 286
Pirit II, 228, III, 161	trihalogenua III, 281
Pirolusit III, 125, 138	Protactini III, 289
Platin:	Quá thể I, 264
điclorua III, 216	Quaczit II, 137
đơn chất III,207	Quy tắc ảnh hưởng trans III, 217
hexaflorua III, 223	Quy tắc Đuylông -Poti I, 14
hidroxit III, 215, 220	Quy tắc Hun I, 37
monooxit III, 214	Quy tắc khí hiểm Situyc III, 92
muối Manhut III, 217	Quy tắc pha I, 191
muối Payron III, 217	Quy tắc Van Hốp I, 166
muối Xâyze III, 218	Radon II, 278
phức chất của Pt(II) và Pt(IV)III, 216,	Ram thép III, 157
221	Reanga II, 209
tách riêng nguyên tố III, 224	Renat III, 149
tetrahalogenua III, 221	Reni:
trioxit III, 223	axit perenic III, 151
Plombat II, 157	axit renic III, 149
Plutoni III, 289	cacbonyl III, 127
Policromat III, 104	claste III, 144
Polimolipđat III, 116	đioxit III, 146
Polivonframat III, 116	đơn chất III, 122
Poloni II, 218, 245	heptaoxit III, 150
Prazeodim:	hexahalogenua III, 149
cacbonat III, 282	oxohalogenua III, 151
đơn chất III, 275	perenat III, 151
hidroxit III, 280	phức chất Re(III) III, 145
muối Pr(III) III, 280	phức chất Re(IV) III, 147
nitrat III, 282	renat III, 149
oxalat III, 282	tetrahalogenua III, 147
oxit III, 280	trihalogenua III, 144
phức chất của Pr III, 283	trioxit IIII, 148
phức chất với axit xitric III, 283	Rođi:
phức chất với EĐTA III, 283	đioxit III, 213
sunfat III, 281	đơn chất III,201
tách riêng nguyên tố III, 286	oxit III, 212, 213
trihalogenua III, 281	tách riêng nguyên tố III, 224
Prexipitat II, 202	trihalogenua III, 213
Prometi:	Rubi II, 89
cacbonat III, 282	Rubiđi:
đơn chất III. 275	đơn chất II 31

oxit II, 35	trihalogenua III, 197
ozonit II, 20	trisaxetyaxetonat III, III, 201
peoxit II, 36	trisphenantrolin III, 202
supeoxit II, 36	Scandi:
Ruteni:	đơn chất III, 47
cacbonyl III, 209	hiđroxit III, 51
dioxit III, 209	muối khác III, 52
đơn chất III, 207	oxit III, 51
rutenat III, 210	phức chất III, 52
tách riêng nguyên tố III, 224	trihalogenua III, 51
tetraoxit III, 211	Selen:
Rutin III, 57, 58	axit selenic II, 249
Samari:	axit seleno II, 249
cacbonat III, 282	đihiđro selenua II, 247
đơn chất III, 275	dioxit II, 248
hidroxit III, 280	đơn chất II, 218, 245
hợp chất Sm(II) III, 285	selen đỏ II, 245
muối Sm(II) và Sm(III) III, 280	selen xám II, 245
nitrat III, 282	selenat II, 249
oxalat III, 282	selenit II, 249
oxit III, 280	trioxit II, 249
phức chất của Sm III, 283	Siâu âm II 136
phức chất với axit xitric III, 283	Silie:
phức chất với EĐTA III, 283	axit florosilixic II, 147
sunfat III, 280	axit silixic II, 137
tách riêng nguyên tố III, 286	đơn chất II, 99, 128
trihalogenua III, 281	silan II, 132
Samôt II, 143	silic cacbua II, 147
Sành II, 143	silic dioxit II, 134
Sắt:	silic monooxit II, 133
amoniacat sắt(III) III,198	silicagel II, 138
bisxiclopentadienyl III, 181	silicat II, 138
cacbonyl III, 169	tetrahalogenua II, 146
đihalogenua III, 175	Silicagel II, 138
đơn chất III, 155	Silicat II, 138
feroxen III, 181	Silicat don II, 140
hidroxit III, 174, 194	Silicat dang ortho II, 139
kali ferixianua III, 198	Silicat kép II, 140
kali feroxianua III, 180	Silicat lớp II, 140
kali trisoxalatoferit III, 201	Silicat mach thẳng II, 139
kiến trúc tinh thể oxit sắt III, 193	Silicat mach vòng II, 140
muối sắt (II) III, 175	Silicat mang lưới II, 140
muối sắt (III) III, 196	Silit III, 89
oxit III, 173, 191, 192	Silumin II, 51
phức chất của sắt (II) III, 198	Smantit III, 161
phức chất của sắt (III) III,178	Soda II, 47
ri sắt III, 159	Sol I, 267: II,137
sunfat III, 174	Solvat hóa I, 194
tetraoxit III, 204	Solvat 1, 194 Solvat I, 194
triclorua III, 197	
microrua III, 177	Sóng siêu âm II, 136

	0
--	---

Số Avôgađrô I, 10	Tách riêng nguyên tố họ đất hiểm III, 286
Số độ tự do I, 192	Tách riêng nguyên tố họ platin III, 224
Số khối I, 6	Tali:
Số lượng tử chính I, 30	đơn chất II, 49, 95
Số lượng tử phụ I, 30	hợp chất Tali (I) II, 98
Số lượng tử spin I, 34	halogenua II, 97
Số lượng tử từ I, 30	hidroxit II, 97
Số oxi hóa I, 131, 242	oxit II, 96
Số phối trí III, 8	Tantalat III, 82
Số thứ tự nguyên tử I, 6	Tantalit III, 72
Sợi cáp quang II, 135	Tantan:
Sphalerit III, 257	claste III, 77
Spinen II, 90, III, 63, 192	đihalogenua III, 75
Stanat II, 157	đơn chất III, 69
Stelit III, 88, 157	hợp chất peoxo III, 83
Stronti:	oxit III, 74, 75, 77, 79
cacbonat II, 64	pentahalogenua III, 83
đơn chất II, 49	tantalat III, 82
halogenua II, 60	tetrahalogenua III, 79
hidroxit II, 59	trihalogenua III, 76
oxit II, 55	tách riêng nguyên tố III, 73
peoxit II, 56	Techi:
sunfat II, 63	cacbonat III, 282
Strontianit II, 54	đơn chất III, 275
Sunfua kim loại II, 224	hiđroxit III, 280
Sunfat II, 233	muối của Tb(III) III, 280
Sunfu II, 218	nitrat III, 282
Sunfuryl halogenua II, 243	oxalat III, 282
Supeoxit II, 20, 36	oxit III, 280
Sunvanit III, 72	phức chất của Tb III, 283
Sứ II, 143	phức chất với axit xitric III, 283
Sự cực hóa ion I, 81	phức chất với EĐTA III, 283
Sự cực hoá thêm III, 268	sunfat III, 281
Sự chậm hóa rắn I, 96	tách riêng nguyên tố III, 286
Sự chậm sôi I, 96	trihalogenua III, 281
Sự điện li trong môi trường nước I, 208	Tecneti:
Sự gây ô nhiễm môi trường nước II, 27	axit petecnetic III, 150
Sự hạ nhiệt độ hóa rắn của dung dịch I,	cacbonyl III, 127
204	đioxit III, 146
Sự ion hóa của nước I, 222	đơn chất III, 122
Sự phân li của phức chất III, 37	heptaoxit III, 150
Sự tăng nhiệt độ sôi của dung địch I, 203	hexahalogenua III, 149
Sức căng bề mặt I, 91, II, 23, III, 237	oxohalogenua III, 151
Sức điện động I, 249	petecnetat III, 151
Tách riêng cặp Nb-Ta III, 73	phức chất Tc(IV) III, 147
Tách riềng cặp Zr-Hf III, 59	tetrahalogenua III, 147
Tách riêng họ đất hiếm III, 286	trioxit III, 148
Tách riêng họ platin III, 224	Telu:
Tách riêng nguyên tố cặp Nb-Ta III, 73	axit teluro II, 249
Tách riêng nguyên tố cặp Zr-Hf III, 59	axit teluric II, 250

đihiđro telurua II, 247	Thuốc diễm II, 192
đioxit II, 248	Thuốc pháo II, 190, 270
đơn chất II, 218, 245	Thuốc sát trùng II, 36, 79, 267, 270, III
trioxit II, 249	- 139
Thach anh II, 134	Thuốc thử Nesle III, 269
Thach cao II, 54, 64	Thuỷ ngân :
Than antraxit II, 106	bazo Milon III, 264
Than bùn II, 107, 203	calomen III, 272
Than cốc II, 104; III	điclorua III, 266
Than chì II, 102	đihalogenua III, 266
Than đá II, 106	đơn chất III, 254
Than gỗ II, 104	halogenua thủy ngân(I) III, 272
Than hoạt tính II, 104	hợp chất cơ thủy ngân III, 270
Than mo II, 106	muối Hg(II) III, 265
Than muội II, 104	muối Hg(I) III, 270
Than nâu II, 106	nitrat thủy ngân(I) III, 271
Thép cacbon III, 166	oxit III, 263
Thép chế tạo máy III, 157	pin cúc III, 265
Thép đặc biệt III, 87, 166	pin thuỷ ngân III, 265
Thép hợp kim III, 166	sunfua III, 268
Thép inva III, 157	Thủy tinh II, 141
Thép không ri III, 88, 157	Thủy tinh bông II, 142
Thép mangan III, 123	Thủy tinh Iena II, 142
· · · · · · · · · · · · · · · · · · ·	Thủy tinh lỏng II, 138
Thể điện cực I, 250	Thủy tinh pha lê II, 142
Thế hiệu phân giải I, 263	Thủy tinh Pirec II, 142
Thế oxi hóa-khử I,250	Thủy tinh sợi II, 142
Thế phân giải I, 264	Thủy tinh tạn II, 138
Thiếc:	Thủy tinh thạch anh II, 137
axit stanic II, 149, 157	Thủy tinh tinh thể II, 143
điclorua II, 154	Thuyết "khí electron" I, 111
dihalogenua II, 153	Thuyết axit-bazơ Bronstêt Lauri I, 216
dioxit II, 154	
don chất II, 148	Thuyết axit-bazơ Liuyt I, 221
hidroxit II, 152, 157	Thuyết điện lị Arêniuyt I, 208
hiđrua II, 151	Thuyết Đơ Brơi I, 27
stanat II, 157	Thuyết hoạt hoá Arêniuyt I, 166
sunfua II, 158	Thuyết liên kết hoá trị I, 52, III, 13
tetraclorua II, 157	Thuyết lượng tử I, 22
tetrahalogenua II, 158	Thuyết mạch III, 4
trắng II, 148	Thuyết obitan phân tử I, 64, III, 30
xám II, 148	Thuyết phối trí Vecne III, 4
Thiếc hàn II, 151	Thuyết phức chất hoạt động I, 168
Thiên thạch III, 161	Thuyết trạng thái chuyển tiếp I, 168
Thiên thạch sắt III, 161	Thuyết trường phối tử III, 30
Thori:	Thuyết trường tính thể III, 16
dioxit III, 296	Thuyết vùng I, 111
đơn chất III, 289	Tích số ion của nước I, 223
tetrahidroxit III, 296	Tích số tan I, 228; III,
tetrahalogenua III, 297	Tinh thể I, 99
Thorst III 203	Tinh thể lỏng I, 119

Tính áp điện II, 136	Tương tác cảm ứng I, 86
Tính bán dẫn I, 129; II, 129	Tương tác định hướng I, 85
Tính dẫn điện I, 123	Tương tác khuếch tán I, 86
Tính dẫn nhiệt I, 113	Tương tác tĩnh điện I, 46
Tính mao dẫn I, 97	Untramarin II, 141
Tính nghịch từ I, 83	Uran:
Tính nhớt I, 97	dioxit III, 298
Tính sắt từ I. ₹4, III, 156	đơn chất III, 289
Tính siêu dẫn I, 115, III, 245	hexaflorua III, 303
Tính tự cháy III, 48, 158, 277, 291	oxit hỗn hợp III, 299
Tính thuận từ I, 83; II, 12	peoxit III, 301
Tioasenat II, 217	tetrahalogenua III, 299
Tioasenit II, 216	trihalogenua III, 297
Tionyl halogenua II, 243	trioxit III, 289
Tiostanat II, 160	uranat III, 302
Tiosunfat II, 236	uranyl III, 300
Tiosunfuric II, 235	Uraninit III, 293
Titan:	Vanađat III, 80
axit peoxititanic III, 65	Vanađi:
đihalogenua III, 66	đihalogenua III, 75
đơn chất III, 54	đơn chất III, 69
hidroxit III, 59, 66, 67	hợp chất peoxo III, 83
oxit hỗn hợp III, 63	oxit III, 74, 75, 77, 79
oxit III, 59, 66	pentahalogenua III, 83
sunfat III, 65	tetrahalogenua III, 79
tetrahalogenua III, 63	trihalogenua III, 76
trihalogenua III, 67	vanadat III, 82
Toveitit II, 139	Vanadinit III, 72
Tốc độ phản ứng I, 158	Vanadyl III, 78
Tôi thép III, 156	Vàng:
Trạng thái tập hợp I, 91	don chất III, 228
Trạng thái tập hợp trung gian I, 119	hidroxit III, 239, 251
Tridimit II, 134	muối vàng(I) III, 239
Triti II, 3	— — — — — — — — — — — — — — — — — — —
Tuli:	muối vàng(III) III, 251
đơn chất III,275	oxit III, 237, 251
cacbonat III, 282	vàng triclorua III, 251
hidroxit III, 280	Vật liệu I, 5, II, 144
	Vilemit II, 139
muối của Tm(III) III, 280	Vitalium III, 157
nitrat III, 282	Viterit II, 54
oxalat III, 282	Vonfram:
oxit III, 280	axit vonframic III, 114
phức chất của Tm III, 283	cacbonyl III, 91
phức chất với axit xítric III, 283	đihalogenua III, 108
phức chất với EĐTA III, 283	dioxit III, 111
sunfat III, 281	disunfua III, 112
tách riêng nguyên tố III, 286	đơn chất III, 86
. 7. 1	heteropolicromat III, 117
trihalogenua III, 28†	hexahalogenua III,119
Từ tính I, 83; II, 12; III, 156, 277	isopoliyonframatat III. 11'

polivonframat III, 117	Ximang magie 11, 62
tetrahalogenua III, 112	Ximang Pooclang II, 145
trioxit III, 113	Xinaba III, 257
vonframat III, 114	Xitan II, 143
xanh vonfram III, 114	Xitocrom III, 191
Vonframat III, 114	Xút än da II, 39
Vonframit III,89	Xử lí nước thải II, 28
Xanh Beclin III, 181	Ytecbi:
Xanh molipđen III, 115	cacbonat III, 282
Valid monpuon III, 110	đơn chất III, 275
Xanh Tuabun III, 119	hidroxit III, 280
Xanh vonfram III, 115	hợp chất của Yb(II) III, 285
Xaphia II, 89	muối của Yb(II) và Yb(III) III, 285,
Xaxolin II, 72	280
Xelenotit II, 54	nitrat III, 282
Xenon:	oxalat III, 282
axit pexenic II, 284	oxit III, 280
điflorua II, 281	phức chất của Yb III, 283
đơn chất II, 278	phức chất với axit xitric III, 283
hexaflorua II, 283	phức chất với EĐTA III, 283
pexe nat II, 284	
tetraflorua II, 282	sunfat III, 281
tetraoxit II, 284	tách riêng nguyên tố III, 286
trioxit II, 283	tách riêng nguyên tố III, 286
Xenotim III, 49	trihalogenua III, 281
Xeri:	Ytri:
cacbonat III, 282	đơn chất III, 47
dioxit III, 284	hidroxit III, 51
đơn chất III, 275	muối khác III, 52
hidroxit III, 280, 284	oxit III, 51
muối xeri(III) III, 280	phức chất III, 52
muối xeri(IV) III, 285	trihalogenua III, 51
	Zeolit II, 68, 141
nitrat III, 282	Zincat III, 260, 261
oxalat III, 282	Zicon II, 139, III, 57
oxit III, 280	Ziconi:
phức chất của Ce III, 283	đơn chất III, 54
phức chất với axit xitric III, 283	hidroxit III, 59, 66, 67
phúc chất với EĐTA III, 283	oxit hỗn hợp III, 63
sunfat III, 281	oxit III, 59, 66
tách riêng nguyên tố III, 286	sunfat III, 65
trihalogenua III, 281	tetrahalogenua III, 63
Xesi:	tách riêng nguyên tố III, 59
cacbonat II, 46	tach heng highlyen to ma, as
đơn chất II, 31	
halogenua II, 44	•
hidroxit II, 37	•
oxit II, 35	
peoxit II, 36	
supeoxit II, 36	
Xiderit III, 161	
Ximăng kêm III, 262	
Whitang Kom III, 202	

Chịu trách nhiệm xuất bản: Chủ tịch HĐQT kiêm Tổng Giám đốc NGÔ TRẦN ÁI Phó Tổng Giám đốc kiêm Tổng biên tập VŨ DƯƠNG THỰY

Biên tập lần đầu:
NGUYỄN CẨM TÚ
Biên tập tái bản:
PHÙNG PHƯƠNG LIÊN
Biên tập mĩ thuật:
TẠ THANH TÙNG
Trình bày bìa:
TẠ THANH TÙNG
Sửa bản in:
NGUYỄN CẨM TÚ

HÓA HỌC YÔ CƠ - Tập ba

Mā số: 7K394T5 - DAI

In 4.000 bản, khổ 19 x 27cm. Tại Công ty In Thái Nguyên. Số xuất bản: 21/341 - 05. In xong và nộp lưu chiếu quý IV năm 2005.

TÌM ĐỘC SÁCH ĐẠI HỌC VÀ CAO ĐẮNG - BỘ MÔN HÓA HỌC

của Nhà xuất bản Giáo dục

1. Hóa học vô cơ - Tạp 1,2,3

2. Hóa học đại cương - Tập 1,2,3

3. Cơ sở lí thuyết Hóa học - Phần I : (Cấu tạo chất)

4. Co số li thuyết Hóa học - Phân II : (Nhiệt động hóa học, ...)

5. Cơ sở lí thuyết các quá trình Hóa học

Hóa học các hợp chất dị vòng

7. Hoa lí - Tập 1,2,3

8. Hóa lí - Tập 4

9. Hóa học đại cương (khối Nông - Làm - Ngư)

10. Ăn mòn và bảo vệ kim loại

11. Phản ứng điện hóa và ứng dụng

12. Hóa học phản tích - Phán II:

(Phán ứng của ion trong dụng dịch nước)

13. Hóa học phân tích - Phán III: (Các phương pháp định lượng hóa học)

14. Giáo trình hóa lí - Tập 1,2

15. Hóa học - Năm thứ nhất, năm thứ hai (Giáo trình đào tạo kĩ sư chất lượng cao)

16. Hóa học Đại cương (CĐSP) - Tập 1

17. Thực hành Hóa học Đại cương (CĐSP)

18. Hóa học Vô cơ (CĐSP) - Tập 1,2

19. Hóa học Phân tích (CĐSP)

20 Co sở Hóa học Hữu cơ (CĐSP) - Tập 1,2,3

21 Phương pháp đạy học Hóa học (CĐSP) - Tập 1,2,3

22 Hóa học Công nghệ và Môi trường (CĐSP)

HOÀNG NHÂM RENÉ DIDIER (Vũ Đăng Độ ... dịch từ bán tiếng Pháp) NGUYÊN ĐÌNH CHI

NGUYÊN HANH

VŨ ĐĂNG ĐÔ

NGUYẾN MINH THẢO

TRÂN VĂN NHÂN (chủ biển)

NGUYỄN VĂN TUẾ

NGUYÊN VÂN TẦU (chủ biên)

NGUYỂN VÁN TUẾ

TRÂN HIỆP HÁI

NGUYÊN TINH DUNG

NGUYẾN TINH DUNG

NGUYỄN ĐÌNH HUỂ

ANDRÉ DURUPTHY, ... (Đào Quý Chiệu,

Từ Ngọc Ánh dịch từ bản tiếng Pháp)

TRẨN THÀNH HUẾ

HÀ THỊ NGỌC LOAN

NGUYỄN THỂ NGÔN, TRẦN THỊ ĐÀ

NGUYỄN TINH DUNG

TRẨN QUỐC SƠN, NGUYỄN VAN TÒNG

ĐẠNG VĂN LIẾU

NGUYỂN CƯƠNG, NGUYỄN MẠNH DUNG

NGUYÊN THỊ SỬU

PHÙNG TIẾN ĐẠT (chủ biên)

Bạn đọc có thể tìm mua tại các Công ti Sách - Thiết bị trường học ở các địa phương hoặc các Của hàng sách của Nhà xuất bản Giáo đực:

Tại Hà Nội : 25 Hàn Thuyên, 81 Trấn Hưng Đạo, 187B Giáng Võ, 23 Tràng Tiền

Tại Đà Nẵng : 15 Nguyễn Chí Thanh

Tại Thành phố Hồ Chí Minh : **104 Mai Thị Lựu, Quận 1**

Giá: 37.400d